Abstract

We study the abnormal and the rigid curves of the 2-distributions of ๐‘๐‘› satisfying everywhere the Goursat condition. We give the directions for the rigid and the abnormal curves when the systems satisfy the strong Goursat condition or when they have a singularity of order 2 in each dimension.

1. Introduction

Let ๐ธ be a 2-distribution on ๐‘๐‘›. We denote by๐ธ1=๐ธ1=๐ธ,๐ธ๐‘–=๎€บ๐ธ๐‘–โˆ’1,๐ธ๐‘–โˆ’1๎€ป,๐ธ๐‘–=๎€บ๐ธ,๐ธ๐‘–โˆ’1๎€ป.(1.1) A small growth vector (sgv) of ๐ธ, at a point ๐‘โˆˆ๐‘๐‘›, is the sequence ๎€บ๐‘Ÿ1(๐‘),๐‘Ÿ2(๐‘),โ€ฆ๎€ป๐‘†,(1.2) where ๐‘Ÿ๐‘–(๐‘)=dim๐ธ๐‘–(๐‘), for every ๐‘–โ‰ฅ1.

The great growth vector, at ๐‘, is the sequence ๎€บ๐‘š1(๐‘),๐‘š2(๐‘),โ€ฆ๎€ป๐บ,(1.3) where ๐‘š๐‘—(๐‘)=dim๐ธ๐‘—(๐‘), for every ๐‘—โ‰ฅ1.

If the dimensions of ๐ธ๐‘– (resp., ๐ธ๐‘—) are independent of ๐‘, then the distribution is called regular (resp., totally regular).

If the great growth vector, at a point ๐‘โˆˆ๐‘๐‘›, is [2,3,4,โ€ฆ,๐‘›]๐บ, then the distribution is called distribution satisfying the Goursat condition at ๐‘. Moreover, if ๐ธ satisfies, on a neighborhood of ๐‘, the Goursat condition, then its annihilator, ๐ธโŸ‚, is called Goursat system and denoted by (GS).

The classification of the distributions, with respect to the small and great growth vectors, was the object of many articles. The beginning was by Engel [1], where he gave the normal form of the (GS) in dimension 4.

In an article written in 1910, Cartan [2] studied the case of dimension 5. In 1978 Giaro et al. completed the work of Cartan about the systems of dimension 5 [3]. In such a case 2 nonequivalent models are presented. In 1981, Kumpera and Ruiz [4] gave the different normal forms in dimension ๐‘›โ‰ค6.

The classification, of models, in dimensions 7 and 8 are given by [5]. The study of the models in dimension ๐‘› is also open. We say that [6], when the small and the great growth vector are the same, we have the system (GNF).

Zhitomirskiฤญ [7] gave the asymptotic normal forms of the regular distributions and the generic case studied in many articles, for example [8].

The normal form of the model, satisfying at a neighborhood of a point the small growth vector [2,3,4,4,5,5,โ€ฆ,๐‘›โˆ’1,๐‘›โˆ’1,๐‘›]๐‘†, is given in [9].

2. Rigid and Abnormal Line Subdistributions of the Goursat Systems Satisfying the Strong Condition of Goursat

The Goursat systems are given by the following theorem.

Theorem 2.1 (see [4, 5]). Let ๐ธ be a 2-distribution on ๐‘๐‘›, satisfying in each point, the condition of Goursat, then ๐ธโŸ‚=โŽงโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽฉ๐œ”1=๐‘‘๐‘ฅ2+๐‘ฅ3๐‘‘๐‘ฅ1,๐œ”2=๐‘‘๐‘ฅ3+๐‘ฅ4๐‘‘๐‘ฅ1,๐œ”3=๐‘‘๐‘ฅ๐‘–3+๐‘ฅ5๐‘‘๐‘ฅ๐‘—3,๎€ท๐‘–3,๐‘—3๎€ธโˆˆ{(4,1),(1,4)},๐œ”4=๐‘‘๐‘ฅ๐‘–4+๐‘‹6๐‘‘๐‘ฅ๐‘—4,๎€ท๐‘–4,๐‘—4๎€ธโˆˆ๎€ฝ๎€ท5,๐‘—3๎€ธ,๎€ท๐‘—3,5๎€ธ๎€พ,โ‹ฎ๐œ”๐‘›โˆ’2=๐‘‘๐‘ฅ๐‘–๐‘›โˆ’2+๐‘‹๐‘›๐‘‘๐‘ฅ๐‘—๐‘›โˆ’2,๎€ท๐‘–๐‘›โˆ’2,๐‘—๐‘›โˆ’2๎€ธโˆˆ๎€ฝ๎€ท๐‘›โˆ’1,๐‘—๐‘›โˆ’3๎€ธ,๎€ท๐‘—๐‘›โˆ’3,๐‘›โˆ’1๎€ธ๎€พ,(2.1) where ๐‘‹๐‘™=โŽงโŽจโŽฉ๐‘ฅ๐‘™,if๎€ท๐‘–๐‘™โˆ’2,๐‘—๐‘™โˆ’2๎€ธ=๎€ท๐‘—๐‘™โˆ’3,๐‘™โˆ’1๎€ธ,๐‘ฅ๐‘™+๐‘๐‘™,if๎€ท๐‘–๐‘™โˆ’2,๐‘—๐‘™โˆ’2๎€ธ=๎€ท๐‘™โˆ’1,๐‘—๐‘™โˆ’3๎€ธ,(2.2) for 6โ‰ค๐‘™โ‰ค๐‘› and ๐‘6,๐‘7,โ€ฆ,๐‘๐‘›โˆ’2 are real arbitrary constants.

This theorem gives the different Goursat systems denoted by (GS).

Definition 2.2. Let ๐ธ be a 2-distribution on ๐‘๐‘›, ๐‘โˆˆ๐‘๐‘›. ๐ธ satisfies the strong condition of Goursat, at ๐‘, if the small and the big growth vectors, at this point, are [2,3,โ€ฆ,๐‘›]๐‘† and [2,3,โ€ฆ,๐‘›]๐ต.

Theorem 2.3 (see [6]). Let ๐ธ be a 2-distribution on ๐‘๐‘› satisfying, in each point, the condition of Goursat. Suppose that ๐ธ satisfies the strong condition of Goursat, at a point ๐‘โˆˆ๐‘๐‘›, then there exists a local coordinate system (๐‘ฅ,๐‘ˆ), around ๐‘, such that ๐ธโŸ‚=โŽงโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽฉ๐œ”1=๐‘‘๐‘ฅ2+๐‘ฅ3๐‘‘๐‘ฅ1,๐œ”2=๐‘‘๐‘ฅ3+๐‘ฅ4๐‘‘๐‘ฅ1,๐œ”3=๐‘‘๐‘ฅ4+๐‘ฅ5๐‘‘๐‘ฅ1,๐œ”4=๐‘‘๐‘ฅ5+๐‘ฅ6๐‘‘๐‘ฅ1,โ‹ฎ๐œ”๐‘›โˆ’2=๐‘‘๐‘ฅ๐‘›โˆ’1+๐‘ฅ๐‘›๐‘‘๐‘ฅ1,(2.3) it means that ๐ธ is spanned by ๐‘ฃ1=๐œ•/๐œ•๐‘ฅ๐‘› and ๐‘ฃ2=๐œ•๐œ•๐‘ฅ1โˆ’๐‘ฅ3๐œ•๐œ•๐‘ฅ2โˆ’๐‘ฅ4๐œ•๐œ•๐‘ฅ3โˆ’โ‹ฏโˆ’๐‘ฅ๐‘›๐œ•๐œ•๐‘ฅ๐‘›โˆ’1.(2.4)

Remark that, in this theorem, ๐ธ satisfies the strong condition of Goursat, at a point ๐‘. Such property can be extended without difficulty to a neighborhood of ๐‘. For the definitions of abnormal and rigid curves, see [10].

Definition 2.4. Let ๐ธ be a 2-distribution on ๐‘€; a ๐ถ1-curve ๐›พโˆถ[๐›ผ,๐›ฝ]โ†’๐‘€ is said to be horizontal (or ๐ธ-curve) if ๐›พ.(๐‘ก)โˆˆ๐ธ(๐›พ(๐‘ก)), for any ๐‘กโˆˆ[๐›ผ,๐›ฝ].

The set of horizontal curves connecting two points ๐‘Ž and ๐‘ of ๐‘€, will be denoted by ฮฉ๐‘Ž,๐‘([๐›ผ,๐›ฝ]). The theorem of Chow [11] certified that ฮฉ๐‘Ž,๐‘([๐›ผ,๐›ฝ])โ‰ ๐œ™, for any ๐‘Ž,๐‘โˆˆ๐‘€.

Definition 2.5. Let ๐ธ be a 2-distribution on ๐‘€,๐‘Ž๐ถ1-curve ๐›พโˆถ[๐›ผ,๐›ฝ]โ†’๐‘€ is said to be rigid, if ๐›พ is an isolated point of ฮฉ๐‘Ž,๐‘([๐›ผ,๐›ฝ]) for the ๐ถ1-topology.

Definition 2.6. Let ๐ธ be a 2-distribution on ๐‘€. A line subdistribution (i.e., distribution of dimension one) of ๐ฟ is said to be rigid, if any ๐ฟ-curve is rigid. ๐ฟ is said to be local rigid, if for any ๐‘โˆˆ๐‘€, there exists a neighborhood ๐‘ˆ of ๐‘, such that any ๐ฟ๐‘ˆ-curve is rigid.

If ๐ธ is a 2-distribution on ๐‘€, we denote ฮฉ๐‘Ž([๐›ผ,๐›ฝ]) the set of ๐ธ-curves ๐›พโˆถ[๐›ผ,๐›ฝ]โ†’๐‘€, starting from the point ๐‘Ž.

Definition 2.7. A curve ๐›พโˆˆฮฉ๐‘Ž([๐›ผ,๐›ฝ]), is said to be abnormal, if the mapping end: ฮฉ๐‘Ž([๐›ผ,๐›ฝ])โ†’๐‘€, defined by end (๐›พ)=๐›พ(๐›ฝ), is not a submersion at ๐›พ.

Proposition 2.8 (see [10]). Let ๐ธ be a ๐‘˜-distribution on ๐‘€. If ๐‘ฃ1,๐‘ฃ2,โ€ฆ,๐‘ฃ๐‘˜ form a basis of ๐ธ and if ๐›พโˆˆฮฉ๐‘Ž([๐›ผ,๐›ฝ]), such that ๐›พ.(๐‘ก)=๐‘ข1(๐‘ก)๐‘ฃ1+โ‹ฏ+๐‘ข๐‘˜(๐‘ก)๐‘ฃ๐‘˜|๐›พ(๐‘ก), then the following propositions are equivalent. (1)๐›พ is abnormal.(2)There exists a lift curve ฮ“โˆถ[๐›ผ,๐›ฝ]โ†’๐‘‡โ‹†๐‘€, absolutely continuous, of coordinates (๐‘ž1,๐‘ž2,โ€ฆ,๐‘ž๐‘›), such that(a)ฮ“(๐‘ก)โ‰ 0, for any ๐‘กโˆˆ[๐›ผ,๐›ฝ],(b)ฮ“(๐‘ก)โˆˆ๐ธโŸ‚,(c)ฮ“ satisfies the equation (๐‘ž1.,๐‘ž2.,โ€ฆ,๐‘ž๐‘›.) = ๐‘ข1(๐‘ก)(๐‘ž1,๐‘ž2,โ€ฆ,๐‘ž๐‘›)๐‘‘๐‘ฃ1+โ‹ฏ+๐‘ข๐‘˜(๐‘ก)(๐‘ž1,๐‘ž2,โ€ฆ,๐‘ž๐‘›)๐‘‘๐‘ฃ๐‘˜|๐›พ(๐‘ก).

Definition 2.9. Let ๐ธ be a 2-distribution on ๐‘€; a line subdistribution ๐ฟ is said to be abnormal, if any ๐ฟ-curve is abnormal. ๐ฟ is said to be local abnormal, if for any ๐‘โˆˆ๐‘€, there exists a neighborhood ๐‘ˆ of ๐‘, such that any ๐ฟ๐‘ˆ-curve is abnormal.

Definition 2.10. Let ๐ธ be a 2-distribution on ๐‘€; a distribution ๐ท on ๐‘€ is said to be nice with respect to ๐ธ if ๐ท is an involutive distribution of codimension 2 such that ๐ธ๐‘โŠ„๐ท๐‘ and dim(๐ธ2๐‘โˆฉ๐ท๐‘)=2, for any point ๐‘โˆˆ๐‘€.

Proposition 2.11 (see [10]). Let ๐ธ be a 2-distribution on ๐‘๐‘› and ๐ฟ be a line subdistribution on ๐ธ. Consider the following properties. (a)๐ฟ is locally rigid.(b)๐ฟ is locally abnormal.(c)Locally ๐ฟ is the intersection of ๐ธ and a nice distribution.(d)dim(๐‘Ž๐‘‘โˆž๐ฟ)๐‘<๐‘›, for every ๐‘โˆˆ๐‘๐‘›.Then, one has the following implication: xy(2.5)

Zhitomirskiฤญ, in [10], conjectured that (d)โ‡’(b), and he proved that (a), (b), (c), and (d) are not equivalent in general. Now we prove that, The properties are equivalent if the distribution satisfies the strong condition of Goursat.

Theorem 2.12. Let ๐ธ be a 2-distribution on ๐‘๐‘›, ๐‘›โ‰ฅ4, satisfying in each point the strong condition of Goursat, then the properties (a), (b), (c), and (d) are equivalent.

Proof. By Theorem 2.3, ๐ธ is spanned, on a neighborhood ๐‘ˆ, by ๐‘ฃ1=๐œ•๐œ•๐‘ฅ๐‘›,๐‘ฃ2=๐œ•๐œ•๐‘ฅ1โˆ’๐‘ฅ3๐œ•๐œ•๐‘ฅ2โˆ’๐‘ฅ4๐œ•๐œ•๐‘ฅ3โˆ’โ‹ฏโˆ’๐‘ฅ๐‘›๐œ•๐œ•๐‘ฅ๐‘›โˆ’1.(2.6)
Let ๐ฟ be a line subdistribution satisfying (d), and let ๐‘ข=๐‘Ž๐‘ฃ1+๐‘๐‘ฃ2 be a generator of ๐ฟ. We have๎€บ๐‘ฃ2,๐‘ฃ1๎€ป=๐œ•๐œ•๐‘ฅ๐‘›โˆ’1,๎€บ๐‘ฃ2,๎€บ๐‘ฃ2,๐‘ฃ1๎€ป๎€ป=๐œ•๐œ•๐‘ฅ๐‘›โˆ’2.(2.7)
Easily, by induction, we say that๎€บ๐‘Ž๐‘‘๐‘–๐‘ฃ2,๐‘ฃ1๎€ป=๐œ•๐œ•๐‘ฅ๐‘›โˆ’๐‘–,๎€บ๐‘ฃ1,๎€บ๐‘Ž๐‘‘๐‘–๐‘ฃ2,๐‘ฃ1๎€ป๎€ป=๎‚ธ๐œ•๐œ•๐‘ฅ๐‘›,๐œ•๐œ•๐‘ฅ๐‘›โˆ’๐‘–๎‚น=0,(2.8) for every ๐‘–=1,2,โ€ฆ,๐‘›โˆ’2.
A simple induction shows that๐‘Ž๐‘‘๐‘–๐‘ข๎€ท๐‘ฃ1๎€ธ=๐›ผ๐‘–1๐‘ฃ1+๐›ผ๐‘–2๐‘ฃ2๐‘–โˆ’1๎“๐‘—=1๐›ผ๐‘–๐‘—๐‘Ž๐‘‘๐‘—๐‘ฃ2๎€ท๐‘ฃ1๎€ธ+๐‘๐‘–๐‘Ž๐‘‘๐‘–๐‘ฃ2๎€ท๐‘ฃ1๎€ธ,(2.9) where ๐›ผ๐‘—๐‘–, for ๐‘—=1,2,โ€ฆ,๐‘–, are ๐ถโˆž functions on ๐‘ˆ to ๐‘. Because dim(๐‘Ž๐‘‘โˆž๐ฟ)๐‘<๐‘›, for every ๐‘โˆˆ๐‘๐‘›, we have necessarly ๐‘=0 and by consequently ๐ฟ is spanned by ๐‘ฃ1.
Prove now (d)โ‡’(c). Let ๐‘=ker(๐‘‘๐‘ฅ1โˆง๐‘‘๐‘ฅ2), we say easily ๐‘ is a nice distribution (see [10]). In fact: ๐‘ฃ1(๐‘ฅ1)=๐‘ฃ1(๐‘ฅ2)=0, then ๐‘ฃ1โˆˆ๐ธโˆฉ๐‘. Otherwise [๐‘ฃ1,๐‘ฃ2]=โˆ’๐œ•/๐œ•๐‘ฅ๐‘›โˆ’1, then [๐‘ฃ1,๐‘ฃ2](๐‘ฅ1)=[๐‘ฃ1,๐‘ฃ2](๐‘ฅ2)=0, we deduce that ๐ธ2โˆฉ๐‘=span{๐‘ฃ1,[๐‘ฃ1,๐‘ฃ2]} and consequently dim(๐ธ2โˆฉ๐‘)๐‘=2.
Now cod(๐‘)=2 and ๐‘ is integrable. Because ๐‘ฃ2(๐‘ฅ1)=0, we obtain ๐ธ๐‘ is not a subset of ๐‘๐‘, for every ๐‘โˆˆ๐‘๐‘›, then ๐‘ is a nice distribution. Moreover ๐ฟ=๐ธโˆฉ๐‘, then (d)โ‡’(c), by [10].
Prove now (d)โ‡’(a). Consider the form ๐œ”๐‘›โˆ’2 of the system ๐ธโŸ‚. We have (๐œ”๐‘›โˆ’2)0=(๐‘‘๐‘ฅ๐‘›โˆ’2)0โ‰ 0 and๐‘–๐‘ฃ1๐‘‘๐œ”๐‘›โˆ’2=๐‘–๐‘ฃ1๎€ท๐‘‘๐‘ฅ๐‘›โˆ’1โˆง๐‘‘๐‘ฅ1๎€ธ=๐‘–๐œ•/๐œ•๐‘ฅ๐‘›๎€ท๐‘‘๐‘ฅ๐‘›โˆ’1โˆง๐‘‘๐‘ฅ1๎€ธ=0.(2.10) Otherwise [๐‘ฃ2,[๐‘ฃ1,๐‘ฃ2]]=โˆ’๐œ•/๐œ•๐‘ฅ๐‘›โˆ’2 then ๐œ”([๐‘ฃ2,[๐‘ฃ1,๐‘ฃ2]])=โˆ’1โ‰ 0 and ๐œ”0 is not in ๐ธ3|0. By Theorem 5.7 of [10], ๐ฟ is locally rigid.

Let ๐ธ be a 2-distribution of ๐‘๐‘›, spanned by ๐‘ฃ1 and ๐‘ฃ2. ๐ฟ๐ธ is the line subdistribution spanned by a vector field in the form ๐‘Ž๐‘ฃ1+๐‘๐‘ฃ2, where ๐‘Ž and ๐‘ are such that ๐‘Ž[๐‘ฃ1,[๐‘ฃ1,๐‘ฃ2]]+๐‘[๐‘ฃ2,[๐‘ฃ1,๐‘ฃ2]] is in ๐ธ2 and (๐‘Ž2+๐‘2โ‰ 0). We say that ๐ฟ๐ธ is independent of the choice of ๐‘ฃ1 and ๐‘ฃ2. Zhitomirskiฤญ [10] proved that ๐ฟ๐ธ is a line subdistribution locally rigid, also by a conjecture, it is unique, in the case where ๐ธ is regular and satisfying the condition dim๐ธ2=3,dim๐ธ3=4,(2.11) this is the case of (GS1).

3. Rigid and Abnormal Line Subdistributions of the Goursat Systems Presenting in Each Dimension a Singularity of Order 2

Definition 3.1. Let ๐‘† be a Goursat system. ๐‘† is called presenting a transposition of order ๐‘™, ๐‘™โˆˆ{3,4,โ€ฆ,๐‘›โˆ’2} if ๐œ”๐‘™โˆ’1=๐‘‘๐‘ฅ๐‘–๐‘™โˆ’1+๐‘‹๐‘™+1๐‘‘๐‘ฅ๐‘—๐‘™โˆ’1,๐œ”๐‘™=๐‘‘๐‘ฅ๐‘—๐‘™โˆ’1+๐‘ฅ๐‘™+2๐‘‘๐‘ฅ๐‘™+1.(3.1)

Definition 3.2. If the small growth vector of a 2-distribution ๐ธ on ๐‘๐‘›, at a point ๐‘ of ๐‘๐‘›, has the form [2,3,โ€ฆ,๐‘ ,๐‘ ,โ€ฆ,๐‘ ๎„ฟ๎…€๎…€๎…€๎…€๎…ƒ๎…€๎…€๎…€๎…€๎…Œ๐‘˜times,โ€ฆ,๐‘›] (denoted by [2,3,โ€ฆ,๐‘ ๐‘˜,โ€ฆ,๐‘›]), the distribution is called a distribution presenting, in the dimension ๐‘ , a singularity of order ๐‘˜.

Remark 3.3. If the distribution satisfies the condition of Goursat the dimensions 2, 3 and ๐‘› are of order 1 at every point.

Notation 3. The system of Goursat satisfying, at every point ๐‘ฅโˆˆ๐‘๐‘›, the condition [2,3,4๐‘˜,5๐‘˜,โ€ฆ,(๐‘›โˆ’1)๐‘˜,๐‘›]๐‘† is denoted by (GS๐‘˜).

Theorem 3.4 (see [9]). Let ๐ธ be a 2-distribution on ๐‘๐‘›, satisfying at every point the Goursat condition, such that at ๐‘ฅ0โˆˆ๐‘๐‘›, we have [2,3,42,52,โ€ฆ,(๐‘›โˆ’1)2,๐‘›]๐‘†. Then there exists a local system of coordinates (๐‘ฅ,๐‘ˆ), around ๐‘ฅ0, such that ๐ธโŸ‚=โŽงโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽฉ๐œ”1=๐‘‘๐‘ฅ2+๐‘ฅ3๐‘‘๐‘ฅ1,๐œ”2=๐‘‘๐‘ฅ3+๐‘ฅ4๐‘‘๐‘ฅ1,๐œ”3=๐‘‘๐‘ฅ4+๐‘ฅ5๐‘‘๐‘ฅ1,๐œ”4=๐‘‘๐‘ฅ5+๐‘ฅ6๐‘‘๐‘ฅ1,โ‹ฎ๐œ”๐‘›โˆ’3=๐‘‘๐‘ฅ๐‘›โˆ’2+๐‘ฅ๐‘›โˆ’1๐‘‘๐‘ฅ1,๐œ”๐‘›โˆ’2=๐‘‘๐‘ฅ1+๐‘ฅ๐‘›๐‘‘๐‘ฅ๐‘›โˆ’1,(3.2) it means that ๐ธ is spanned by ๐‘ฃ1=๐œ•๐œ•๐‘ฅ๐‘›,๐‘ฃ2=โˆ’๐‘ฅ๐‘›๐œ•๐œ•๐‘ฅ1+๐‘ฅ๐‘›๐‘ฅ3๐œ•๐œ•๐‘ฅ2+๐‘ฅ๐‘›๐‘ฅ4๐œ•๐œ•๐‘ฅ3+โ‹ฏ+๐‘ฅ๐‘›๐‘ฅ๐‘›โˆ’1๐œ•๐œ•๐‘ฅ๐‘›โˆ’2+๐œ•๐œ•๐‘ฅ๐‘›โˆ’1.(3.3)

Now we want to study the rigid and the abnormal line subdistributions (directions) for the Goursat systems (GS2).

Definition 3.5. Let ๐ธ be a 2-distribution spanned by ๐‘ฃ1 and ๐‘ฃ2. The line subdistribution ๐ฟ๐ธ, is the line subdistribution spanned by a vector field in the form ๐‘Ž๐‘ฃ1+๐‘๐‘ฃ2, where ๐‘Ž and ๐‘ are such that ๐‘Ž[๐‘ฃ1,[๐‘ฃ1,๐‘ฃ2]]+๐‘[๐‘ฃ2,[๐‘ฃ1,๐‘ฃ2]]โˆˆ๐ธ2 and ๐‘Ž2+๐‘2โ‰ 0.

Theorem 3.6. In the Goursat systems (๐บ๐‘†2), ๐ฟ๐ธ is the unique direction of abnormal and rigid curves.

Proof. ๐ธ is spanned by ๐‘ฃ1=๐œ•๐œ•๐‘ฅ๐‘›,๐‘ฃ2=โˆ’๐‘ฅ๐‘›๐œ•๐œ•๐‘ฅ1+๐‘ฅ๐‘›๐‘ฅ3๐œ•๐œ•๐‘ฅ2+๐‘ฅ๐‘›๐‘ฅ4๐œ•๐œ•๐‘ฅ3+โ‹ฏ+๐‘ฅ๐‘›๐‘ฅ๐‘›โˆ’1๐œ•๐œ•๐‘ฅ๐‘›โˆ’2+๐œ•๐œ•๐‘ฅ๐‘›โˆ’1,(3.4) and ๐ธ2 is spanned by ๐‘ฃ1, ๐‘ฃ2, and [๐‘ฃ1,๐‘ฃ2], where [๐‘ฃ1,๐‘ฃ2]=โˆ’๐œ•/๐œ•๐‘ฅ1+๐‘ฅ3(๐œ•/๐œ•๐‘ฅ2)+๐‘ฅ4(๐œ•/๐œ•๐‘ฅ3)+โ‹ฏ+๐‘ฅ๐‘›โˆ’1(๐œ•/๐œ•๐‘ฅ๐‘›โˆ’2).
Prove now ๐ฟ๐ธ is spanned by ๐‘ฃ1. In fact [๐‘ฃ1,[๐‘ฃ1,๐‘ฃ2]]=0 and [๐‘ฃ2,[๐‘ฃ1,๐‘ฃ2]]=๐œ•/๐œ•๐‘ฅ๐‘›โˆ’2, then necessarily ๐‘=0 and ๐ฟ๐ธ=span{๐‘ฃ1}. Recall that ๐ฟ๐ธ is a direction of rigid curves, then of abnormal curves.
Does exist another direction field of the abnormal curves?
Let ๐ฟ=Vect{๐›ผ๐‘ฃ1+๐›ฝ๐‘ฃ2} be an arbitrary line subdistribution of ๐ธ. Let ๐›พโˆถ๐ผโ†’๐‘๐‘› be a horizontal curve of ๐ฟ, (i.e., ฬ‡๐›พ(๐‘ก)โˆˆ๐ฟ๐›พ(๐‘ก)). Suppose that ๐›พ is an abnormal curve. There exists a lift curve ฮ“โˆถ๐ผโ†’๐‘‡โ‹†๐‘๐‘› satisfying the adjoint equation: (ฬ‡๐‘1,ฬ‡๐‘2,โ€ฆ,ฬ‡๐‘๐‘›)=โˆ’๐›ผ(๐‘1,๐‘2,โ€ฆ,๐‘๐‘›)๐‘‘๐‘ฃ1โˆ’๐›ฝ(๐‘1,๐‘2,โ€ฆ,๐‘๐‘›)๐‘‘๐‘ฃ2. In other hand:๎€ทฬ‡๐‘1,โ€ฆ,ฬ‡๐‘๐‘›๎€ธ=โˆ’๐›ฝ๎€ท๐‘1,โ€ฆ,๐‘๐‘›๎€ธโŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ000000โ‹ฏ0โˆ’100๐‘ฅ๐‘›00โ‹ฏ0๐‘ฅ3000๐‘ฅ๐‘›00โ‹ฏ0๐‘ฅ4โ‹ฎโ‹ฎโ‹ฎโ‹ฎโ‹ฎโ‹ฎโ‹ฎโ‹ฎ0000000โ‹ฏ๐‘ฅ๐‘›๐‘ฅ๐‘›โˆ’100โ‹ฏโ‹ฏโ‹ฏโ‹ฏ000โ‹ฏโ‹ฏโ‹ฏโ‹ฏ0โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ .(3.5) We verify that ๐ธ2=Vect{๐‘ฃ1,๐‘ฃ2,๐œ•/๐œ•๐‘ฅ๐‘›โˆ’1}. But ฮ“โŠ‚(๐ธ2)โŸ‚, then we have ๐‘๐‘›=๐‘๐‘›โˆ’1=0,(3.6)๐‘1=๐‘ฅ3๐‘2+๐‘ฅ4๐‘3+โ‹ฏ+๐‘ฅ๐‘›โˆ’1๐‘๐‘›โˆ’3.(๐ผ)
Suppose that ๐›ฝโ‰ 0. By the adjoint equation, we have ฬ‡๐‘๐‘›โˆ’1=โˆ’๐›ฝ๐‘ฅ๐‘›๐‘๐‘›โˆ’2=0, but ๐›ฝโ‰ 0, then ๐‘๐‘›โˆ’2=0. Similarly ฬ‡๐‘๐‘›โˆ’2=โˆ’๐›ฝ๐‘ฅ๐‘›๐‘๐‘›โˆ’3=0, then ๐‘๐‘›โˆ’3=0.
Show that by induction ๐‘๐‘›โˆ’๐‘–=0, for every ๐‘–=1,2,โ€ฆ,๐‘›โˆ’2.
For ๐‘–=1, the property is true. Suppose that ๐‘๐‘›โˆ’๐‘–โˆ’1=0, prove that ๐‘๐‘›โˆ’๐‘–=0. By the adjoint equation ฬ‡๐‘๐‘–=โˆ’๐›ฝ๐‘ฅ๐‘›๐‘๐‘–โˆ’1=0(3.7) for every ๐‘–=1,2,โ€ฆ,๐‘›โˆ’3. we deduce that ๐‘๐‘–=0. Finally, using (๐ผ) we have ๐‘1=0. We deduce ฮ“=0, impossible, then we obtain ๐›ฝ=0 and ๐ฟ is spanned by ๐‘ฃ1, by consequently ๐ฟ=๐ฟ๐ธ and ๐ฟ is locally rigid.

Corollary 3.7. With the same conditions of Theorem 2.3, the distribution ๐ฟ๐ธ is the unique line subdistribution locally rigid on ๐ธ.

Proof. In fact, [๐‘ฃ1,[๐‘ฃ1,๐‘ฃ2]]=0 and ๐‘Ž[๐‘ฃ1,[๐‘ฃ1,๐‘ฃ2]]+๐‘[๐‘ฃ2,[๐‘ฃ1,๐‘ฃ2]]=๐‘[๐‘ฃ2,[๐‘ฃ1,๐‘ฃ2]]=โˆ’๐‘(๐œ•/๐œ•๐‘ฅ๐‘›โˆ’2)โˆˆ๐ธ2=span{๐‘ฃ1,๐‘ฃ2,๐œ•/๐œ•๐‘ฅ๐‘›โˆ’1} if ๐‘=0, then ๐ฟ๐ธ= span{๐‘ฃ1}, but the distribution spanned by ๐‘ฃ1 is the unique locally rigid subdistribution, on ๐ธ, of dimension 1.