Abstract

There are different notions of hyperrings (๐‘…,+,โ‹…). In this paper, we extend the isomorphism theorems to hyperrings, where the additions and the multiplications are hyperoperations.

1. Introduction

The theory of hyperstructures was introduced in 1934 by Marty [1] at the 8th Congress of Scandinavian Mathematicians. This theory has been subsequently developed by Corsini [2โ€“4], Mittas [5, 6], Stratigopoulos [7], and by various authors. Basic definitions and propositions about the hyperstructures are found in [3, 4, 8]. Krasner [9] has studied the notion of hyperfields, hyperrings, and then some researchers, namely, Ameri [10], Daลกiฤ‡ [11], Davvaz [12], Gontineac [13], Massouros [14], Pianskool et al. [15], Sen and Dasgupta [16], Vougiouklis [8, 17], and others followed him.

Hyperrings are essentially rings with approximately modified axioms. There are different notions of hyperrings (๐‘…,+,โ‹…). If the addition + is a hyperoperation and the multiplication โ‹… is a binary operation, then the hyperring is called Krasner (additive) hyperring [9]. Rota [18] introduced a multiplicative hyperring, where + is a binary operation and the multiplication โ‹… is a hyperoperation. De Salvo [19] studied hyperrings in which the additions and the multiplications were hyperoperations. These hyperrings were also studied by Barghi [20] and by Asokkumar and Velrajan [21โ€“23]. In 2007, Davvaz and Leoreanu-Fotea [24] published a book titled Hyperring Theory and Applications. Davvaz [12] extended that the isomorphism theorems to Krasner hyperrings, provided the hyperideals considered in the isomorphism theorems are normal.

In this paper, we extend the isomorphism theorems to hyperrings, in which both the additions and the multiplications are hyperoperations. Also, it is observed that if ๐ผ is an hyperideal of a hyperring ๐‘… and (๐ผ,+) is a normal subcanonical hypergroup of (๐‘…,+), then ๐‘…/๐ผ is a ring, and hence the quotient hyperrings considered in the isomorphism theorems by Davvaz in [12] are rings.

2. Basic Definitions and Notations

This section provides some basic definitions that have been used in the sequel. A hyperoperation โˆ˜ on a nonempty set ๐ป is a mapping of ๐ปร—๐ป into the family of nonempty subsets of ๐ป (i.e., ๐‘ฅโˆ˜๐‘ฆโŠ†๐ป, for every ๐‘ฅ,๐‘ฆโˆˆ๐ป). The definitions are found in references [3, 4, 8, 24]. A hypergroupoid is a nonempty set ๐ป equipped with a hyperoperation โˆ˜. For any two nonempty subsets ๐ด and ๐ต of a hypergroupoid ๐ป and for ๐‘ฅโˆˆ๐ป, ๐ดโˆ˜๐ต, we mean the set โ‹ƒ๐‘Žโˆˆ๐ด๐‘โˆˆ๐ต(๐‘Žโˆ˜๐‘), ๐ดโˆ˜๐‘ฅ=๐ดโˆ˜{๐‘ฅ}, and ๐‘ฅโˆ˜๐ต={๐‘ฅ}โˆ˜๐ต.

A hypergroupoid (๐ป,โˆ˜) is called a semihypergroup if ๐‘ฅโˆ˜(๐‘ฆโˆ˜๐‘ง)=(๐‘ฅโˆ˜๐‘ฆ)โˆ˜๐‘ง for every ๐‘ฅ,๐‘ฆ,๐‘งโˆˆ๐ป (the associative axiom). A hypergroupoid (๐ป,โˆ˜) is called a quasihypergroup if ๐‘ฅโˆ˜๐ป=๐ปโˆ˜๐‘ฅ=๐ป for every ๐‘ฅโˆˆ๐ป (the reproductive axiom). A reproductive semihypergroup is called a hypergroup (in the sense of Marty). A comprehensive review of the theory of hypergroups appears in [3].

Definition 2.1. A nonempty set ๐ป with a hyperoperation + is said to be a canonical hypergroup if the following conditions hold: (i)for every ๐‘ฅ,๐‘ฆโˆˆ๐ป, ๐‘ฅ+๐‘ฆ=๐‘ฆ+๐‘ฅ,(ii)for every ๐‘ฅ,๐‘ฆ,๐‘งโˆˆ๐ป, ๐‘ฅ+(๐‘ฆ+๐‘ง)=(๐‘ฅ+๐‘ฆ)+๐‘ง,(iii)there exists 0โˆˆ๐ป (called neutral element of ๐ป) such that 0+๐‘ฅ={๐‘ฅ}=๐‘ฅ+0 for all ๐‘ฅโˆˆ๐ป,(iv)for every ๐‘ฅโˆˆ๐ป, there exists a unique element denoted by โˆ’๐‘ฅโˆˆ๐ป such that 0โˆˆ๐‘ฅ+(โˆ’๐‘ฅ)โˆฉ(โˆ’๐‘ฅ)+๐‘ฅ,(v)for every ๐‘ฅ,๐‘ฆ,๐‘งโˆˆ๐ป, ๐‘งโˆˆ๐‘ฅ+๐‘ฆ implies ๐‘ฆโˆˆโˆ’๐‘ฅ+๐‘ง and ๐‘ฅโˆˆ๐‘งโˆ’๐‘ฆ.

Example 2.2. Consider the set ๐ป={0,๐‘ฅ,๐‘ฆ}. Define a hyperaddition + on ๐ป as in the following table. Then, (๐ป,+) is a canonical hypergroup. +0๐‘ฅ๐‘ฆ0๐‘ฅ0๐‘ฅ๐‘ฆ๐‘ฆ๐‘ฅ{0,๐‘ฅ}๐‘ฆ๐‘ฆ๐‘ฆ{0,๐‘ฅ,๐‘ฆ}(2.1)

The following elementary facts in a canonical hypergroup ๐ป easily follow from the axioms.(i)โˆ’(โˆ’๐‘Ž)=๐‘Ž for every ๐‘Žโˆˆ๐ป,(ii)0 is the unique element such that for every ๐‘Žโˆˆ๐ป, there is an element โˆ’๐‘Žโˆˆ๐ป with the property 0โˆˆ๐‘Ž+(โˆ’๐‘Ž),(iii)โˆ’0=0, (iv)โˆ’(๐‘Ž+๐‘)=โˆ’๐‘Žโˆ’๐‘ for all ๐‘Ž,๐‘โˆˆ๐ป.

For any subset ๐ด of a canonical hypergroup ๐ป, โˆ’๐ด denotes the set {โˆ’๐‘Žโˆถ๐‘Žโˆˆ๐ด}. A nonempty subset ๐‘ of a canonical hypergroup of ๐ป is called a subcanonical hypergroup of ๐ป if ๐‘ is a canonical hypergroup under the same hyperoperation as that of ๐ป. Equivalently, for every ๐‘ฅ,๐‘ฆโˆˆ๐‘, ๐‘ฅโˆ’๐‘ฆโŠ†๐‘. In particular, for any ๐‘ฅโˆˆ๐‘, ๐‘ฅโˆ’๐‘ฅโŠ†๐‘. Since 0โˆˆ๐‘ฅโˆ’๐‘ฅ, it follows that 0โˆˆ๐‘.

Definition 2.3. An equivalence relation ๐œŒ defined on a canonical hypergroup (๐ป,+) is called strongly regular if for all ๐‘ฅ,๐‘ฆโˆˆ๐ป and ๐‘ฅ๐œŒ๐‘ฆ implies that for every ๐‘โˆˆ๐ป, for every ๐‘Žโˆˆ๐‘ฅ+๐‘ and for every ๐‘โˆˆ๐‘ฆ+๐‘ one has ๐‘Ž๐œŒ๐‘.

Definition 2.4. A subcanonical hypergroup ๐ด of a canonical hypergroup ๐ป is said to be normal if ๐‘ฅ+๐ดโˆ’๐‘ฅโŠ†๐ด for all ๐‘ฅโˆˆ๐ด.

Definition 2.5. The heart of a canonical hypergroup ๐ป is the union of the sums (๐‘ฅ1โˆ’๐‘ฅ1)+(๐‘ฅ2โˆ’๐‘ฅ2)+(๐‘ฅ3โˆ’๐‘ฅ3)+โ‹ฏ+(๐‘ฅ๐‘›โˆ’๐‘ฅ๐‘›), where ๐‘ฅ๐‘–โˆˆ๐ป and ๐‘› is a natural number and it is denoted by ๐œ”๐ป.

Definition 2.6. Let ๐ป1 and ๐ป2 be two canonical hypergroups. A mapping ๐œ™ from ๐ป1 into ๐ป2 is called a homomorphism from ๐ป1 into ๐ป2 if (i) ๐œ™(๐‘Ž+๐‘)โŠ†๐œ™(๐‘Ž)+๐œ™(๐‘) for all ๐‘Ž,๐‘โˆˆ๐ป1 and (ii) ๐œ™(0)=0 hold. The mapping ๐œ™ is called a good or strong homomorphism if (i) ๐œ™(๐‘Ž+๐‘)=๐œ™(๐‘Ž)+๐œ™(๐‘) for all ๐‘Ž,๐‘โˆˆ๐ป1 and (ii) ๐œ™(0)=0 hold.

A homomorphism (resp., strong homomorphism) ๐œ™ from a canonical hypergroup ๐ป1 to a canonical hypergroup ๐ป2 is called an isomorphism (resp., strong isomorphism) if ๐œ™ is one to one and onto. If ๐ป1 is strongly isomorphic to ๐ป2, then we denote it by ๐ป1โ‰…๐ป2.

Definition 2.7. Let ๐œ™ be a homomorphism from canonical hypergroup ๐ป1 into a canonical hypergroup ๐ป2. Then, the set {๐‘ฅโˆˆ๐ป1โˆถ๐œ™(๐‘ฅ)=0} is called kernel of ๐œ™ and is denoted by Ker๐œ™, and the set {๐œ™(๐‘ฅ)โˆถ๐‘ฅโˆˆ๐ป1} is called Image of ๐œ™ and is denoted by Im๐œ™.

It is clear that Ker๐œ™ is a subcanonical hypergroup of ๐ป1 and Im๐œ™ is a subcanonical hypergroup of ๐ป2. The definition of a hyperring given below is equivalent to one formulated by De Salvo [19] (see Corsini [3]) and studied by Barghi [20].

Definition 2.8. A hyperring is a triple (๐‘…,+,โ‹…), where ๐‘… is a nonempty set with a hyperaddition + and a hypermultiplication โ‹… satisfying the following axioms: (1)(๐‘…,+) is a canonical hypergroup,(2)(๐‘…,โ‹…) is a semihypergroup such that ๐‘ฅโ‹…0=0โ‹…๐‘ฅ=0 for all ๐‘ฅโˆˆ๐‘…, (i.e, 0 is a bilaterally absorbing element), (3)The hypermultiplication โ‹… is distributive with respect to the hyperoperation +. That is, for every ๐‘ฅ,๐‘ฆ,๐‘งโˆˆ๐‘…, ๐‘ฅโ‹…(๐‘ฆ+๐‘ง)=๐‘ฅโ‹…๐‘ฆ+๐‘ฅโ‹…๐‘ง and (๐‘ฅ+๐‘ฆ)โ‹…๐‘ง=๐‘ฅโ‹…๐‘ง+๐‘ฆโ‹…๐‘ง.
In a hyperring if the hypermultiplication is a binary operation, then it is called as Krasner or additive hyperring. Also, in the Definition 2.8, if the hyperaddition is a binary operation, then it is called as multiplicative hyperring.

Example 2.9. Let ๐‘…={0,1} be a set with two hyperoperations defined as follows: +0101{0}{1}โ‹…{1}{0,1}0101{0}{0}{0}{0,1}(2.2)

Then, (๐‘…,+,โ‹…) is a hyperring.

Definition 2.10. Let ๐‘… be a hyperring, and let ๐ผ be a nonempty subset of ๐‘…. ๐ผ is called a left (resp., right) hyperideal of ๐‘… if (๐ผ,+) is a canonical subhypergroup of ๐‘… and for every ๐‘Žโˆˆ๐ผ and ๐‘Ÿโˆˆ๐‘…, ๐‘Ÿ๐‘ŽโŠ†๐ผ (resp., ๐‘Ž๐‘ŸโŠ†๐ผ). A hyperideal of ๐‘… is one which is a left as well as a right hyperideal of ๐‘….

If ๐ผ,๐ฝ are left (resp., right) hyperideals of a hyperring ๐‘…, then ๐ผ+๐ฝ, ๐ผโˆฉ๐ฝ are left (resp., right) hyperideal of ๐‘…. If ๐ผ,๐ฝ are hyperideals of a hyperring ๐‘…, then ๐ผ+๐ฝ, ๐ผโˆฉ๐ฝ are hyperideals of ๐‘….

Definition 2.11. Let ๐‘…1 and ๐‘…2 be two hyperrings. A mapping ๐œ™ from ๐‘…1 into ๐‘…2 is called a homomorphism if (i) ๐œ™(๐‘Ž+๐‘)โŠ†๐œ™(๐‘Ž)+๐œ™(๐‘); (ii) ๐œ™(๐‘Ž๐‘)โŠ†๐œ™(๐‘Ž)๐œ™(๐‘) and (iii) ๐œ™(0)=0 hold for all ๐‘Ž,๐‘โˆˆ๐‘…1. The mapping ๐œ™ is called a good homomorphism or a strong homomorphism if (i) ๐œ™(๐‘Ž+๐‘)=๐œ™(๐‘Ž)+๐œ™(๐‘); (ii) ๐œ™(๐‘Ž๐‘)=๐œ™(๐‘Ž)๐œ™(๐‘) and (iii) ๐œ™(0)=0 hold for all ๐‘Ž,๐‘โˆˆ๐‘…1.

Definition 2.12. A homomorphism (resp., strong homomorphism) ๐œ™ from hyperring ๐‘…1 into a hyperring ๐‘…2 is said to be an isomorphism (resp., strong isomorphism) if ๐œ™ is one to one and onto. If ๐‘…1 is strongly isomorphic to ๐‘…2, then it is denoted by ๐‘…1โ‰…๐‘…2.

Remark 2.13. Let ๐œ™ be a homomorphism from a hyperring ๐‘…1 into a hyperring ๐‘…2. Then Ker๐œ™ is a hyperideal of ๐‘…1 and Im๐œ™ is a hyperideal of ๐‘…2.

3. Canonical Hypergroups

Let ๐‘ be a subcanonical hypergroup of a canonical hypergroup ๐ป. In this section, we construct quotient canonical hypergroup ๐ป/๐‘ and prove that when ๐‘ is normal, ๐ป/๐‘ is an abelian group.

Proposition 3.1. Let ๐ป be a canonical hypergroup, and let ๐‘ be a subcanonical hypergroup of ๐ป. For any two elements ๐‘Ž,๐‘โˆˆ๐ป, if we define a relation ๐‘Žโˆผ๐‘ if ๐‘Žโˆˆ๐‘+๐‘, then ~ is an equivalence relation on ๐ป.

Proof. Let ๐‘Žโˆˆ๐ป. Since ๐‘Ž=๐‘Ž+0โˆˆ๐‘Ž+๐‘, the relation ~ is reflexive. Let ๐‘Ž,๐‘โˆˆ๐ป. If ๐‘Žโˆˆ๐‘+๐‘, then ๐‘Žโˆˆ๐‘+๐‘› for some ๐‘›โˆˆ๐‘. That is, ๐‘โˆˆ๐‘Žโˆ’๐‘›โŠ†๐‘Ž+๐‘. So, ~ is a symmetric relation. Suppose that ๐‘Ž,๐‘,๐‘โˆˆ๐ป such that ๐‘Žโˆผ๐‘ and ๐‘โˆผ๐‘, then ๐‘Žโˆˆ๐‘+๐‘ and ๐‘โˆˆ๐‘+๐‘. Therefore, ๐‘Žโˆˆ๐‘+๐‘›, and ๐‘โˆˆ๐‘+๐‘š, for some ๐‘›,๐‘šโˆˆ๐‘. So, ๐‘Žโˆˆ๐‘+๐‘š+๐‘›โŠ†๐‘+๐‘. Hence ๐‘Žโˆผ๐‘. Therefore, the relation ~ is transitive.

Remark 3.2. Let ๐‘ be a subcanonical hypergroup of a canonical hypergroup ๐ป. We denote the equivalence class determined by the element ๐‘ฅโˆˆ๐ป by the equivalence relation ~ by ๐‘ฅ. It is clear that ๐‘ฅ=๐‘ฅ+๐‘.

Proposition 3.3. Let ๐ป be a canonical hypergroup, and let ๐‘ be a normal subcanonical hypergroup of ๐ป. Then, for ๐‘ฅ,๐‘ฆโˆˆ๐‘, the following are equivalent: (1)๐‘ฆโˆˆ๐‘ฅ+๐‘, (2)๐‘ฅโˆ’๐‘ฆโŠ†๐‘, (3)(๐‘ฅโˆ’๐‘ฆ)โˆฉ๐‘โ‰ โˆ….

Proof. (1) implies (2).
Since ๐‘ฆโˆˆ๐‘ฅ+๐‘, we have ๐‘ฆโˆ’๐‘ฅโŠ†๐‘ฅ+๐‘โˆ’๐‘ฅ. Since ๐‘ is normal subcanonical hypergroup of ๐ป, we get ๐‘ฅ+๐‘โˆ’๐‘ฅโŠ†๐‘. Thus, ๐‘ฆโˆ’๐‘ฅโŠ†๐‘. That is, โˆ’(๐‘ฆโˆ’๐‘ฅ)โŠ†๐‘, and hence ๐‘ฅโˆ’๐‘ฆโŠ†๐‘.
(2) implies (3) is obvious.
(3) impliesโ€‰โ€‰(1). Since (๐‘ฅโˆ’๐‘ฆ)โˆฉ๐‘โ‰ โˆ…, there exists ๐‘Žโˆˆ๐‘ฅโˆ’๐‘ฆ and ๐‘Žโˆˆ๐‘. Therefore, โˆ’๐‘ฆ+๐‘ฅโŠ†โˆ’๐‘ฆ+๐‘Ž+๐‘ฆโŠ†๐‘. If ๐‘งโˆˆโˆ’๐‘ฆ+๐‘ฅ, then ๐‘งโˆˆ๐‘. Therefore, โˆ’๐‘ฆโˆˆ๐‘งโˆ’๐‘ฅ. That is, ๐‘ฆโˆˆ๐‘ฅโˆ’๐‘งโŠ†๐‘ฅ+๐‘.

Remark 3.4. Let ๐ป be a canonical hypergroup, and let ๐‘ be a subcanonical hypergroup of ๐ป. When ๐‘ is normal, the equivalence relation defined in the Proposition 3.1 coincides with the the equivalence relation defined by Davvaz [12]. Further, the Propositions 3.1 and 3.3 are true when the hyperaddition on the canonical hypergroup ๐ป is not commutative. Also, for any ๐‘ฅโˆˆ๐ป, we have (โˆ’๐‘ฅ)=โˆ’(๐‘ฅ).

Theorem 3.5. Let ๐ป be a canonical hypergroup, ๐‘ be a subcanonical hypergroup of ๐ป. Then for ๐‘ฅ,๐‘ฆโˆˆ๐ป, the sets ๐ด={๐‘งโˆถ๐‘งโˆˆ๐‘ฅ+๐‘ฆ}, ๐ต={๐‘งโˆถ๐‘งโˆˆ๐‘ฅ+๐‘ฆ} and ๐ถ={๐‘งโˆถ๐‘งโŠ†๐‘ฅ+๐‘ฆ} are equal.

Proof. Let ๐‘งโˆˆ๐ด. Then ๐‘งโˆˆ๐‘ฅ+๐‘ฆ. Since ๐‘ฅโˆˆ๐‘ฅ and ๐‘ฆโˆˆ๐‘ฆ we have ๐‘งโˆˆ๐‘ฅ+๐‘ฆ. Thus ๐ดโŠ†๐ต. Suppose ๐‘งโˆˆ๐ต, then ๐‘งโˆˆ๐‘ฅ+๐‘ฆ. That is, ๐‘งโˆˆ๐‘ก+๐‘› for some ๐‘กโˆˆ๐‘ฅ+๐‘ฆ and ๐‘›โˆˆ๐‘. Therefore ๐‘ง=๐‘ก, where ๐‘กโˆˆ๐‘ฅ+๐‘ฆ. Since ๐‘กโˆˆ๐ด, we get ๐‘งโˆˆ๐ด. Thus ๐ตโŠ†๐ด. Hence ๐ด=๐ต.
If ๐‘งโˆˆ๐ด, then ๐‘งโˆˆ๐‘ฅ+๐‘ฆ. Therefore, ๐‘งโŠ†๐‘ฅ+๐‘ฆ+๐‘=๐‘ฅ+๐‘+๐‘ฆ+๐‘=๐‘ฅ+๐‘ฆ. Hence ๐ดโŠ†๐ถ. On the other hand if ๐‘งโˆˆ๐ถ, then ๐‘งโŠ†๐‘ฅ+๐‘ฆ. Since ๐‘งโˆˆ๐‘งโŠ†๐‘ฅ+๐‘ฆ, we get ๐‘งโˆˆ๐‘ +๐‘› for some ๐‘ โˆˆ๐‘ฅ+๐‘ฆ and ๐‘›โˆˆ๐‘. Thus ๐‘ง=๐‘ . Since ๐‘ โˆˆ๐ด, we get ๐ถโŠ†๐ด. Hence ๐ด=๐ถ.

Remark 3.6. Let ๐ป be a canonical hypergroup, and let ๐‘ be a subcanonical hypergroup of ๐ป. Then, we denote the collection of all equivalence classes {๐‘ฅโˆถ๐‘ฅโˆˆ๐ป} induced by the equivalence relation ~ by ๐ป/๐‘.

Theorem 3.7. Let ๐ป be a canonical hypergroup, and let ๐‘ be a subcanonical hypergroup of ๐ป. If we define ๐‘ฅโŠ•๐‘ฆ={๐‘งโˆถ๐‘งโˆˆ๐‘ฅ+๐‘ฆ} for all ๐‘ฅ,๐‘ฆโˆˆ๐ป/๐‘, then ๐ป/๐‘ is a canonical hypergroup.

Proof. If ๐‘ฅ1,๐‘ฆ1,๐‘ฅ2,๐‘ฆ2โˆˆ๐ป such that ๐‘ฅ1=๐‘ฅ2 and ๐‘ฆ1=๐‘ฆ2, then ๐‘ฅ2โˆˆ๐‘ฅ1+๐‘ and ๐‘ฆ2โˆˆ๐‘ฆ1+๐‘. Let ๐‘ง2โˆˆ๐‘ฅ2+๐‘ฆ2โŠ†(๐‘ฅ1+๐‘)+(๐‘ฆ1+๐‘). Since ๐ป is commutative, ๐‘ง2โˆˆ๐‘ง1+๐‘– for some ๐‘ง1โˆˆ๐‘ฅ1+๐‘ฆ1 and for some ๐‘–โˆˆ๐‘. That is, ๐‘ง2+๐‘=๐‘ง1+๐‘. Hence, ๐‘ฅ2โŠ•๐‘ฆ2โŠ†๐‘ฅ1โŠ•๐‘ฆ1. Also, since ๐‘ฅ1โˆˆ๐‘ฅ2+๐‘ and ๐‘ฆ1โˆˆ๐‘ฆ2+๐‘, by a similar argument, we get, ๐‘ฅ1โŠ•๐‘ฆ1โŠ†๐‘ฅ2โŠ•๐‘ฆ2. Hence, ๐‘ฅ1โŠ•๐‘ฆ1=๐‘ฅ2โŠ•๐‘ฆ2. Thus, hyperaddition โŠ• is well defined.
Let ๐‘ฅ,๐‘ฆ,๐‘งโˆˆ๐ป/๐‘. If ๐‘ขโˆˆ(๐‘ฅโŠ•๐‘ฆ)โŠ•๐‘ง, then ๐‘ขโˆˆ๐‘โŠ•๐‘ง for some ๐‘โˆˆ๐‘ฅโŠ•๐‘ฆ. That is, ๐‘ข=๐‘Ž for some ๐‘Žโˆˆ๐‘+๐‘ง. Also, ๐‘=๐‘ for some ๐‘โˆˆ๐‘ฅ+๐‘ฆ. Now, ๐‘Žโˆˆ๐‘+๐‘งโŠ†๐‘+๐‘+๐‘ง=๐‘+๐‘ง+๐‘. That is, ๐‘Žโˆˆ๐‘ฃ+๐‘ for some ๐‘ฃโˆˆ๐‘+๐‘งโŠ†(๐‘ฅ+๐‘ฆ)+๐‘ง=๐‘ฅ+(๐‘ฆ+๐‘ง). So, ๐‘ฃโˆˆ๐‘ฅ+๐‘ก for some ๐‘กโˆˆ๐‘ฆ+๐‘ง. This means that ๐‘Ž=๐‘ฃ and ๐‘ฃโˆˆ๐‘ฅโŠ•๐‘ก. Since ๐‘กโˆˆ๐‘ฆโŠ•๐‘ง, we have ๐‘ข=๐‘Ž=๐‘ฃโˆˆ๐‘ฅโŠ•๐‘กโŠ†๐‘ฅโŠ•(๐‘ฆโŠ•๐‘ง). This means that ๐‘ขโˆˆ๐‘ฅโŠ•(๐‘ฆโŠ•๐‘ง). Hence (๐‘ฅโŠ•๐‘ฆ)โŠ•๐‘งโŠ†๐‘ฅโŠ•(๐‘ฆโŠ•๐‘ง). Similarly, we get ๐‘ฅโŠ•(๐‘ฆโŠ•๐‘ง)โŠ†(๐‘ฅโŠ•๐‘ฆ)โŠ•๐‘ง. Hence, ๐‘ฅโŠ•(๐‘ฆโŠ•๐‘ง)=(๐‘ฅโŠ•๐‘ฆ)โŠ•๐‘ง. Thus, the hyperaddition is associative.
Consider the element 0=0+๐‘โˆˆ๐ป/๐‘. Now, for any ๐‘ฅโˆˆ๐ป, we have ๐‘ฅโŠ•0={๐‘งโˆถ๐‘งโˆˆ๐‘ฅ+0}=๐‘ฅ. Similarly, 0โŠ•๐‘ฅ=๐‘ฅ. Thus, 0 is the zero element of ๐ป/๐‘.
Let ๐‘ฅโˆˆ๐ป, then ๐‘ฅโŠ•(โˆ’๐‘ฅ)={๐‘งโˆถ๐‘งโˆˆ๐‘ฅ+(โˆ’๐‘ฅ)=๐‘ฅโˆ’๐‘ฅ}. Since 0โˆˆ๐‘ฅโˆ’๐‘ฅ, we get 0โˆˆ๐‘ฅโŠ•(โˆ’๐‘ฅ). Similarly, we can show that 0โˆˆ(โˆ’๐‘ฅ)โŠ•๐‘ฅ. Let ๐‘ฅโˆˆ๐ป/๐‘, and suppose that ๐‘ฆโˆˆ๐ป/๐‘ is such that 0โˆˆ๐‘ฆโŠ•๐‘ฅ, then 0=๐‘Ž, where ๐‘Žโˆˆ๐‘ฆ+๐‘ฅ. That is, ๐‘ฆโˆˆ๐‘Žโˆ’๐‘ฅโŠ†๐‘โˆ’๐‘ฅ, and hence ๐‘ฆ=โˆ’๐‘ฅ. Thus, the element ๐‘ฅโˆˆ๐ป/๐‘ has a unique inverse โˆ’๐‘ฅโˆˆ๐ป/๐‘.
Suppose that ๐‘งโˆˆ๐‘ฅโŠ•๐‘ฆ, then ๐‘ง=๐‘Ž, where ๐‘Žโˆˆ๐‘ฅ+๐‘ฆ. This implies ๐‘ฅโˆˆ๐‘Žโˆ’๐‘ฆโŠ†๐‘ง+๐‘โˆ’๐‘ฆ. That is, ๐‘ฅโˆˆ๐‘Ÿ+๐‘, where ๐‘Ÿโˆˆ๐‘งโˆ’๐‘ฆ. Thus, ๐‘ฅ=๐‘Ÿโˆˆ๐‘งโŠ•(โˆ’๐‘ฆ). Similarly, we can show ๐‘ฆโˆˆ(โˆ’๐‘ฅ)โŠ•๐‘ง. Since ๐ป is commutative, it is obvious that ๐ป/๐‘ is also commutative. Thus, ๐ป/๐‘ is a canonical hypergroup.

Corollary 3.8. Let ๐œ™ be a strong homomorphism from canonical hypergroup ๐ป1 into a canonical hypergroup ๐ป2, then ๐ป1/Ker๐œ™ is a canonical hypergroup.

Remark 3.9. Let ๐ป be a canonical hypergroup, and let ๐ด be a subcanonical hypergroup of ๐ป. We denote the subset {๐‘ฅโˆˆ๐ปโˆถ๐‘ฅโˆ’๐‘ฅโŠ†๐ด} of ๐ป by ๐‘†๐ด.

Proposition 3.10. Let ๐ป be a canonical hypergroup, and let ๐ด be a subcanonical hypergroup of ๐ป. Then, ๐‘†๐ด is a subcanonical hypergroup of ๐ป containing ๐ด.

Proof. Let ๐‘ฅโˆˆ๐ด. Since ๐ด is a subcanonical hypergroup of ๐ป, ๐‘ฅโˆ’๐‘ฅโŠ†๐ด. This implies ๐‘ฅโˆˆ๐‘†๐ด. Therefore, ๐ดโŠ†๐‘†๐ด. Since ๐ดโ‰ โˆ…, the set ๐‘†๐ด is nonempty.
Let ๐‘ฅ,๐‘ฆโˆˆ๐‘†๐ด. For ๐‘Ÿโˆˆ๐‘ฅโˆ’๐‘ฆ, we get ๐‘Ÿโˆ’๐‘ŸโŠ†(๐‘ฅโˆ’๐‘ฆ)โˆ’(๐‘ฅโˆ’๐‘ฆ)=(๐‘ฅโˆ’๐‘ฅ)+(๐‘ฆโˆ’๐‘ฆ)โŠ†๐ด+๐ด=๐ด. Hence, ๐‘Ÿโˆˆ๐‘†๐ด. That is, ๐‘ฅโˆ’๐‘ฆโŠ†๐‘†๐ด. Therefore, ๐‘†๐ด is a subcanonical hypergroup of ๐ป containing ๐ด.

Definition 3.11. Let (๐ป,+) be a canonical hypergroup, and let ๐ด be a subcanonical hypergroup of ๐ป. โ€‰๐ด is called a subgroup of ๐ป if (๐ด,+) is a group. That is, ๐‘ฅ+๐‘ฆ is a singleton set for all ๐‘ฅ,๐‘ฆโˆˆ๐ด.

Example 3.12. The set ๐ป={0,๐‘Ž,๐‘,๐‘} with the following hyperoperation + is a canonical hypergroup +0๐‘Ž๐‘๐‘0๐‘Ž{0}{๐‘Ž}{๐‘}{๐‘}๐‘{๐‘Ž}{0,๐‘}{๐‘Ž,๐‘}{๐‘}๐‘{๐‘}{๐‘Ž,๐‘}{0,๐‘}{๐‘Ž}{๐‘}{๐‘}{๐‘Ž}{0}(3.1)

In this example {0,๐‘},{0} are subgroups of ๐ป and ๐œ”๐ป={0,๐‘} whereas in the Example 2.2, {0} is the subgroup of ๐ป and ๐œ”๐ป=๐ป.

Proposition 3.13. Let ๐ป be a canonical hypergroup. Then, ๐‘†{0} is the subgroup of ๐ป containing all subgroups of ๐ป.

Proof. By the Proposition 3.10, ๐‘†{0} is the subcanonical hypergroup of ๐ป. Let ๐‘ฅ,๐‘ฆโˆˆ๐‘†{0}. Consider the set ๐‘ฅ+๐‘ฆ. If ๐‘ข,๐‘ฃโˆˆ๐‘ฅ+๐‘ฆ, then ๐‘ขโˆ’๐‘ฃโŠ†(๐‘ฅ+๐‘ฆ)โˆ’(๐‘ฅ+๐‘ฆ)=(๐‘ฅโˆ’๐‘ฅ)+(๐‘ฆโˆ’๐‘ฆ)=0+0=0. Hence, ๐‘ข=๐‘ฃ. This means that the set ๐‘ฅ+๐‘ฆ has only one element. Thus, ๐‘†{0} is a subgroup of ๐ป. Suppose, ๐ด is any subgroup of ๐ป, then for any ๐‘ฅโˆˆ๐ด that we have ๐‘ฅโˆ’๐‘ฅ=0. That is, ๐‘ฅโˆˆ๐‘†{0}. Hence, ๐ดโŠ†๐‘†{0}. Thus, ๐‘†{0} contains all subgroups of ๐ป.

Corollary 3.14. Let ๐ป be a canonical hypergroup. Then, ๐ป is an abelian group if and only if ๐‘†{0}=๐ป.

Proposition 3.15. Let ๐ป be a canonical hypergroup, and let ๐ด be a subcanonical hypergroup of ๐ป. Then, ๐ด is normal if and only if ๐‘†๐ด=๐ป.

Proof. Let ๐ด be normal. Then, for ๐‘ฅโˆˆ๐ป, ๐‘ฅ+0โˆ’๐‘ฅโŠ†๐ด. That is, ๐‘ฅโˆˆ๐‘†๐ด. Hence, ๐‘†๐ด=๐ป. Conversely, if ๐‘†๐ด=๐ป, then for ๐‘ฅโˆˆ๐ป, we get ๐‘ฅ+๐ดโˆ’๐‘ฅ=๐‘ฅโˆ’๐‘ฅ+๐ดโŠ†๐ด+๐ด=๐ด. Thus, ๐ด is normal.

Proposition 3.16. The heart ๐œ”๐ป of a canonical hypergroup ๐ป is a normal subcanonical hypergroup of ๐ป.

Proof. If ๐‘ฅ,๐‘ฆโˆˆ๐œ”๐ป, then ๐‘ฅโˆˆ(๐‘ฅ1โˆ’๐‘ฅ1)+(๐‘ฅ2โˆ’๐‘ฅ2)+(๐‘ฅ3โˆ’๐‘ฅ3)+โ‹ฏ+(๐‘ฅ๐‘›โˆ’๐‘ฅ๐‘›) and ๐‘ฆโˆˆ(๐‘ฆ1โˆ’๐‘ฆ1)+(๐‘ฆ2โˆ’๐‘ฆ2)+(๐‘ฆ3โˆ’๐‘ฆ3)+โ‹ฏ+(๐‘ฆ๐‘šโˆ’๐‘ฆ๐‘š), where ๐‘ฅ๐‘–,๐‘ฆ๐‘—โˆˆ๐ป and ๐‘š,๐‘› are natural numbers. Thus ๐‘ฅโˆ’๐‘ฆโˆˆ(๐‘ฅ1โˆ’๐‘ฅ1)+(๐‘ฅ2โˆ’๐‘ฅ2)+(๐‘ฅ3โˆ’๐‘ฅ3)+โ‹ฏ+(๐‘ฅ๐‘›โˆ’๐‘ฅ๐‘›)+(๐‘ฆ1โˆ’๐‘ฆ1)+(๐‘ฆ2โˆ’๐‘ฆ2)+(๐‘ฆ3โˆ’๐‘ฆ3)+โ‹ฏ+(๐‘ฆ๐‘šโˆ’๐‘ฆ๐‘š)โŠ†๐œ”๐ป. Now, for any element โ„Žโˆˆ๐œ”๐ป, there exists natural number ๐‘› and elements ๐‘ฅ๐‘–โˆˆ๐ป such that โ„Žโˆˆ(๐‘ฅ1โˆ’๐‘ฅ1)+(๐‘ฅ2โˆ’๐‘ฅ2)+(๐‘ฅ3โˆ’๐‘ฅ3)+โ‹ฏ+(๐‘ฅ๐‘›โˆ’๐‘ฅ๐‘›). Then, for any ๐‘ฅโˆˆ๐ป, ๐‘ฅ+โ„Žโˆ’๐‘ฅ=๐‘ฅโˆ’๐‘ฅ+โ„ŽโŠ†๐‘ฅโˆ’๐‘ฅ+(๐‘ฅ1โˆ’๐‘ฅ1)+(๐‘ฅ2โˆ’๐‘ฅ2)+(๐‘ฅ3โˆ’๐‘ฅ3)+โ‹ฏ+(๐‘ฅ๐‘›โˆ’๐‘ฅ๐‘›)โŠ†๐œ”๐ป. Hence, heart ๐œ”๐ป is a normal subcanonical hypergroup of ๐ป.

Proposition 3.17. A subcanonical hypergroup ๐ด of a canonical hypergroup ๐ป is normal if and only if ๐ด contains the heart ๐œ”๐ป of the canonical hypergroup ๐ป.

Proof. Let ๐ด be a normal subcanonical hypergroup of the canonical hypergroup ๐ป. Then ๐‘ฅ+๐‘–โˆ’๐‘ฅโŠ†๐ด for every ๐‘ฅโˆˆ๐ป, and ๐‘–โˆˆ๐ด. In particular, when ๐‘–=0โˆˆ๐ด, we get ๐‘ฅโˆ’๐‘ฅโŠ†๐ด for every ๐‘ฅโˆˆ๐ป. Since ๐ด is a subcanonical hypergroup of ๐ป, the union of the sums (๐‘ฅ1โˆ’๐‘ฅ1)+(๐‘ฅ2โˆ’๐‘ฅ2)+(๐‘ฅ3โˆ’๐‘ฅ3)+โ‹…โ‹…โ‹…+(๐‘ฅ๐‘›โˆ’๐‘ฅ๐‘›)โŠ†๐ด for ๐‘ฅ๐‘–โˆˆ๐ป and ๐‘› is a natural number. That is, ๐œ”๐ปโŠ†๐ด. Conversely, assume that subcanonical hypergroup ๐ด contains the heart ๐œ”๐ป of the canonical hypergroup ๐ป. For ๐‘ฅโˆˆ๐ป and ๐‘–โˆˆ๐ด, ๐‘ฅ+๐‘–โˆ’๐‘ฅ=๐‘ฅโˆ’๐‘ฅ+๐‘–โŠ†๐œ”๐ป+๐ดโŠ†๐ด+๐ด=๐ด. Hence, ๐ด is a normal subcanonical hypergroup.

From Propositions 3.16 and 3.17, we have the following proposition.

Proposition 3.18. In a canonical hypergroup ๐ป, ๐œ”๐ป is the smallest normal subcanonical hypergroup.

Proposition 3.19. Let ๐ด,๐ต be subcanonical hypergroups of a canonical hypergroup ๐ป such that ๐ดโŠ†๐ต, then ๐‘†๐ดโŠ†๐‘†๐ต.

Proof. Let ๐‘ฅโˆˆ๐‘†๐ด. Then, ๐‘ฅโˆ’๐‘ฅโŠ†๐ด. That is, ๐‘ฅโˆˆ๐‘†๐ต. Hence, ๐‘†๐ดโŠ†๐‘†๐ต.

Proposition 3.20. Let ๐ด,๐ต be subcanonical hypergroups of a canonical hypergroup ๐ป such that ๐ดโŠ†๐ต. If ๐ด is normal, then ๐ต is also normal.

Proof. If ๐ด is normal, then by Proposition 3.15, ๐‘†๐ด=๐ป. Since ๐ดโŠ†๐ต, by Proposition 3.19, ๐‘†๐ดโŠ†๐‘†๐ต. Hence, ๐ป=๐‘†๐ต. By Proposition 3.15, ๐ต is normal.

Corollary 3.21. Let ๐ด,๐ต be subcanonical hypergroups of a canonical hypergroup ๐ป such that ๐ด is normal, then the subcanonical hypergroup ๐ด+๐ต is also normal.

Corollary 3.22. Let ๐ป be a canonical hypergroup such that (0) is normal, then all the subcanonical hypergroups are normal.

Theorem 3.23. Let ๐ป be a canonical hypergroup. Then, the following are equivalent: (i)๐ป is an abelian group,(ii)(0) is a normal subcanonical hypergroup of ๐ป,(iii)๐œ”๐ป=(0).

Proof. By Corollary 3.14, a canonical hypergroup ๐ป is an abelian group if and only if ๐‘†{0}=๐ป. By Proposition 3.15, ๐‘†{0}=๐ป if and only if (0) is a normal subcanonical hypergroup of ๐ป. Hence, a canonical hypergroup ๐ป is an abelian group if and only if (0) is a normal subcanonical hypergroup of ๐ป.
By Proposition 3.18, ๐œ”๐ป is the smallest normal subcanonical hypergroup of ๐ป. Therefore, (0) is normal if and only if ๐œ”๐ป=(0).

Corollary 3.24. ๐ป is an abelian group if and only if all subcanonical hypergroups of ๐ป are normal.

Theorem 3.25. Let ๐ป be a canonical hypergroup, and let ๐‘ be a normal subcanonical hypergroup of ๐ป. Then, ๐ป/๐‘ is an abelian group.

Proof. For the quotient canonical hypergroup ๐ป/๐‘, the zero element is ๐‘. Since (๐‘ฅ+๐‘)+๐‘+(โˆ’๐‘ฅ+๐‘)=(๐‘ฅ+๐‘โˆ’๐‘ฅ)+๐‘โŠ†๐‘+๐‘=๐‘ for all ๐‘ฅโˆˆ๐ป, we have {๐‘} is a normal subcanonical hypergroup in ๐ป/๐‘. By Theorem 3.23, ๐ป/๐‘ is an abelian group.

Remark 3.26. If ๐‘ is a normal subcanonical hypergroup of a canonical hypergroup ๐ป, then the relation ~ defined in Proposition 3.1, is a strongly regular equivalence relation. Hence, by Theoremโ€‰โ€‰31 in [3], ๐ป/๐‘ is an abelian group. However, we have proved Theorem 3.25 in a different way.

4. Isomorphism Theorems of Canonical Hypergroups

In this section, we prove the isomorphism theorems of canonical hypergroups.

Theorem 4.1 (First Isomorphism Theorem). Let ๐œ™ be a strong homomorphism from a canonical hypergroup ๐ป1 into a canonical hypergroup ๐ป2 with kernel ๐พ. Then, ๐ป1/๐พ is strongly isomorphic to Im๐œ™.

Proof. Define a map ๐‘“โˆถ๐ป1/๐พโ†’Im๐œ™ by ๐‘“(๐‘ฅ)=๐œ™(๐‘ฅ) for all ๐‘ฅโˆˆ๐ป1. Suppose that ๐‘ฅ=๐‘ฆ, where ๐‘ฅ,๐‘ฆโˆˆ๐ป, then ๐‘ฅโˆˆ๐‘ฆ. That is, ๐‘ฅโˆˆ๐‘ฆ+๐‘˜ for some ๐‘˜โˆˆ๐พ. Hence, ๐œ™(๐‘ฅ)โˆˆ๐œ™(๐‘ฆ+๐‘˜)=๐œ™(๐‘ฆ)+๐œ™(๐‘˜)=๐œ™(๐‘ฆ)+0=๐œ™(๐‘ฆ). So ๐œ™(๐‘ฅ)=๐œ™(๐‘ฆ). Hence, ๐‘“(๐‘ฅ)=๐‘“(๐‘ฆ). Thus, the map ๐‘“ is well defined.
If ๐‘ฅ,๐‘ฆโˆˆ๐ป1, then ๐‘“๎€ท๐‘ฅโŠ•๐‘ฆ๎€ธ=๐‘“๎€ท๎€ฝ=๎€ฝ๐‘“๎€ท๐‘งโˆถ๐‘งโˆˆ๐‘ฅ+๐‘ฆ๎€พ๎€ธ๐‘ง๎€ธ๎€พโˆถ๐‘งโˆˆ๐‘ฅ+๐‘ฆ={๐œ™(๐‘ง)โˆถ๐‘งโˆˆ๐‘ฅ+๐‘ฆ}.(4.1)Also,๐‘“๎€ท๐‘ฅ๎€ธ๎€ท+๐‘“๐‘ฆ๎€ธ=๐œ™(๐‘ฅ)+๐œ™(๐‘ฆ)=๐œ™(๐‘ฅ+๐‘ฆ)={๐œ™(๐‘ง)โˆถ๐‘งโˆˆ๐‘ฅ+๐‘ฆ}.(4.2) Thus, ๐‘“(๐‘ฅโŠ•๐‘ฆ)=๐‘“(๐‘ฅ)+๐‘“(๐‘ฆ). Moreover, ๐‘“(0)=๐œ™(0)=0. Hence, ๐‘“ is a strong homomorphism.
Suppose that ๐‘ฅ,๐‘ฆโˆˆ๐ป1/๐พ such that ๐‘“(๐‘ฅ)=๐‘“(๐‘ฆ), then ๐œ™(๐‘ฅ)=๐œ™(๐‘ฆ). This means that 0โˆˆ๐œ™(๐‘ฅ)โˆ’๐œ™(๐‘ฆ)=๐œ™(๐‘ฅโˆ’๐‘ฆ). That is, ๐œ™(๐‘ง)=0 for some ๐‘งโˆˆ๐‘ฅโˆ’๐‘ฆ. Since ๐œ™(๐‘ง)=0, we get ๐‘งโˆˆ๐พ. Now, ๐‘งโˆˆ๐‘ฅโˆ’๐‘ฆโ‡’๐‘ฅโˆˆ๐‘ง+๐‘ฆโ‡’๐‘ฅโˆˆ๐‘ฆ+๐พ. Then, by Proposition 3.3โ€‰โ€‰๐‘ฅ=๐‘ฆ and hence ๐‘“ is one to one. Clearly, ๐‘“ is onto. Thus, ๐‘“ is a strong isomorphism. That is, ๐ป1/๐พ is strongly isomorphic to Im๐œ™.

Corollary 4.2. Let ๐œ™ be a strong homomorphism from a canonical hypergroup ๐ป1 onto a canonical hypergroup ๐ป2 with kernel ๐พ. Then, ๐ป1/๐พ is isomorphic to ๐ป2.

Theorem 4.3 (Second Isomorphism Theorem). If ๐‘€ and ๐‘ are subcanonical hypergroups of a canonical hypergroup ๐ป, then ๐‘/(๐‘€โˆฉ๐‘)โ‰…(๐‘€+๐‘)/๐‘€.

Proof. It is clear that we can consider the subcanonical hypergroup ๐‘€+๐‘ of the canonical hypergroup ๐ป as a canonical hypergroup ๐‘€+๐‘ for which ๐‘€ is a subcanonical hypergroup. Similarly, the subcanonical hypergroup ๐‘ of the canonical hypergroup ๐ป as a canonical hypergroup ๐‘ for which (๐‘€โˆฉ๐‘) is a subcanonical hypergroup.
Define ๐‘”โˆถ๐‘โ†’(๐‘€+๐‘)/๐‘€ by ๐‘”(๐‘)=๐‘+๐‘€ for every ๐‘โˆˆ๐‘. For all ๐‘Ž,๐‘โˆˆ๐‘, ๐‘”(๐‘Ž+๐‘)=๐‘”({๐‘ฅโˆถ๐‘ฅโˆˆ๐‘Ž+๐‘})={๐‘”(๐‘ฅ)โˆถ๐‘ฅโˆˆ๐‘Ž+๐‘}={๐‘ฅ+๐‘€โˆถ๐‘ฅโˆˆ๐‘Ž+๐‘}=(๐‘Ž+๐‘€)โŠ•(๐‘+๐‘€)=๐‘”(๐‘Ž)โŠ•๐‘”(๐‘). Moreover, ๐‘”(0)=0. Thus, ๐‘” is a strong homomorphism.
Now, ๐‘ฅ+๐‘€โˆˆ(๐‘€+๐‘)/๐‘€ implies that ๐‘ฅโˆˆ๐‘ฆ+๐‘€ for some ๐‘ฆโˆˆ๐‘€+๐‘. That is, ๐‘ฆโˆˆ๐‘Ž+๐‘ for some ๐‘Žโˆˆ๐‘€, ๐‘โˆˆ๐‘. Since ๐‘ฆโˆˆ๐‘+๐‘€, we get ๐‘ฆ+๐‘€=๐‘+๐‘€. Thus, ๐‘”(๐‘)=๐‘+๐‘€=๐‘ฆ+๐‘€=๐‘ฅ+๐‘€. Thus, ๐‘” is onto. Let ๐‘โˆˆ๐‘. Then, ๐‘โˆˆKer๐‘”โ‡”๐‘”(๐‘)=0โ‡”๐‘+๐‘€=0+๐‘€โ‡”๐‘โˆˆ๐‘€. Thus, ๐‘โˆˆKer๐‘” if and only if ๐‘โˆˆ๐‘€โˆฉ๐‘. Hence, by the First Isomorphism Theorem, ๐‘/(๐‘€โˆฉ๐‘)โ‰…(๐‘€+๐‘)/๐‘€.

Theorem 4.4 (Third Isomorphism Theorem). If ๐‘€ and ๐‘ are subcanonical hypergroup of a canonical hypergroup ๐ป such that ๐‘€โŠ†๐‘, then ๐ป/๐‘โ‰…(๐ป/๐‘€)/(๐‘/๐‘€).

Proof. Define a map โ„Žโˆถ๐ป/๐‘โ†’๐ป/๐‘€ by โ„Ž(๐‘ฅ+๐‘)=๐‘ฅ+๐‘€. Then, โ„Ž is a strong onto homomorphism of canonical hypergroup with kernel ๐‘/๐‘€. Therefore, by the First Isomorphism Theorem of canonical hypergroups, ๐ป/๐‘โ‰…(๐ป/๐‘€)/(๐‘/๐‘€).

5. Isomorphism Theorems of Hyperrings

Let ๐‘… be a hyperring, and let ๐ผ be a hyperideal of ๐‘…. Since ๐ผ is a subcanonical hypergroup of ๐‘…,๐‘…/๐ผ={๐‘ฅโˆถ๐‘ฅโˆˆ๐‘…} is a canonical hypergroup under the hyperaddition defined in the Theorem 3.7. In this section, we define a hypermultiplication on ๐‘…/๐ผ and prove that ๐‘…/๐ผ is a hyperring.

Theorem 5.1. If we define ๐‘ฅโŠ—๐‘ฆ={๐‘งโˆถ๐‘งโˆˆ๐‘ฅ๐‘ฆ} for all ๐‘ฅ,๐‘ฆโˆˆ๐‘…/๐ผ, then ๐‘…/๐ผ is a hyperring.

Proof. If ๐‘ฅ1,๐‘ฆ1,๐‘ฅ2,๐‘ฆ2โˆˆ๐‘… such that ๐‘ฅ1=๐‘ฅ2 and ๐‘ฆ1=๐‘ฆ2, then ๐‘ฅ2โˆˆ๐‘ฅ1+๐ผ and ๐‘ฆ2โˆˆ๐‘ฆ1+๐ผ. Let ๐‘ง2โˆˆ๐‘ฅ2๐‘ฆ2โŠ†(๐‘ฅ1+๐ผ)(๐‘ฆ1+๐ผ)โŠ†๐‘ฅ1๐‘ฆ1+๐ผ. Then, ๐‘ง2โˆˆ๐‘ง1+๐‘– for some ๐‘ง1โˆˆ๐‘ฅ1๐‘ฆ1 and for some ๐‘–โˆˆ๐ผ. That is, ๐‘ง2+๐ผ=๐‘ง1+๐ผ and so ๐‘ฅ2โŠ—๐‘ฆ2โŠ†๐‘ฅ1โŠ—๐‘ฆ1. Similarly, we get, ๐‘ฅ1โŠ—๐‘ฆ1โŠ†๐‘ฅ2โŠ•๐‘ฆ2. Hence, ๐‘ฅ1โŠ•๐‘ฆ1=๐‘ฅ2โŠ—๐‘ฆ2. Thus, hypermultiplication โŠ— is well defined.
Suppose, ๐‘ฅ,๐‘ฆ,๐‘งโˆˆ๐‘…/๐ผ. Then, ๎€ท๐‘ฅโŠ—๐‘ฆโŠ—๐‘ง๎€ธ=๎€ฝ๐‘ฅโŠ—๎€พ=๎€ฝ๐‘Žโˆถ๐‘Žโˆˆ๐‘ฆ๐‘ง๎€พ=๎€ฝ๐‘ โˆถ๐‘ โˆˆ๐‘ฅ๐‘Ž,๐‘Žโˆˆ๐‘ฆ๐‘ง๎€พ=๎€ฝ๐‘ โˆถ๐‘ โˆˆ๐‘ฅ(๐‘ฆ๐‘ง)๎€พ=๎€ฝ๐‘ โˆถ๐‘ โˆˆ(๐‘ฅ๐‘ฆ)๐‘ง๎€พ=๎€ฝ๐‘ โˆถ๐‘ โˆˆ๐‘๐‘ง,๐‘โˆˆ๐‘ฅ๐‘ฆ๎€พโŠ—๐‘ โˆถ๐‘ โˆˆ๐‘ฅ๐‘ฆ๐‘ง=๎€ท๐‘ฅโŠ—๐‘ฆ๎€ธโŠ—๐‘ง(5.1) Thus, we get ๐‘ฅโŠ—(๐‘ฆโŠ—๐‘ง)=(๐‘ฅโŠ—๐‘ฆ)โŠ—๐‘ง. Hence, hypermultiplication is associative. Further, ๎€ท๐‘ฅโŠ—๐‘ฆโŠ•๐‘ง๎€ธ=๐‘ฅโŠ—{๐‘+๐ผโˆถ๐‘โˆˆ๐‘ฆ+๐‘ง}={๐‘ž+๐ผโˆถ๐‘žโˆˆ๐‘ฅ๐‘,๐‘โˆˆ๐‘ฆ+๐‘ง}={๐‘ž+๐ผโˆถ๐‘žโˆˆ๐‘ฅ(๐‘ฆ+๐‘ง)}={๐‘ž+๐ผโˆถ๐‘žโˆˆ๐‘ฅ๐‘ฆ+๐‘ฅ๐‘ง}.(5.2) Also, ๎€ท๐‘ฅโŠ—๐‘ฆ๎€ธโŠ•๎€ท๐‘ฅโŠ—๐‘ง๎€ธ={๐‘Ž+๐ผโˆถ๐‘Žโˆˆ๐‘ฅ๐‘ฆ}โŠ•{๐‘+๐ผโˆถ๐‘โˆˆ๐‘ฅ๐‘ง}={๐‘+๐ผโˆถ๐‘โˆˆa+๐‘,๐‘Žโˆˆ๐‘ฅ๐‘ฆ,๐‘โˆˆ๐‘ฅ๐‘ง}={๐‘+๐ผโˆถ๐‘โˆˆ๐‘ฅ๐‘ฆ+๐‘ฅ๐‘ง}.(5.3) Hence, ๐‘ฅโŠ—(๐‘ฆโŠ•๐‘ง)=(๐‘ฅโŠ—๐‘ฆ)โŠ•(๐‘ฅโŠ—๐‘ง). Similarly, we can show that (๐‘ฅโŠ•๐‘ฆ)โŠ—๐‘ง=(๐‘ฅโŠ—๐‘ง)โŠ•(๐‘ฅโŠ—๐‘ง). Therefore, hypermultiplication is distributive with respect to the hyperaddition. Thus, ๐‘…/๐ผ is a hyperring.

Corollary 5.2. Let ๐œ™ be a strong homomorphism from hyperring ๐‘…1 into a hyperring ๐‘…2, then ๐‘…1/Ker๐œ™ is a hyperring.

Remark 5.3. If ๐‘… is a Krasner hyperring and ๐ผ is a hyperideal of ๐‘…, then ๐‘…/๐ผ is also a Krasner hyperring. Further if (๐ผ,+) is a normal subcanonical hypergroup of ๐‘…, then by the Theorems 3.23 and 5.1, ๐‘…/๐ผ is a ring. Hence, the quotient hyperrings considered in [12] are just rings. So, in the isomorphism theorems proved in [12], all the quotient hyperrings considered are rings. However, we prove the isomorphism theorems of hyperrings in which the additions and the multiplications are hyperoperations.
If ๐‘… is a hyperring, and ๐ผ is a hyperideal of ๐‘…, and (๐ผ,+) is a normal subcanonical hypergroup of ๐‘…, then ๐‘…/๐ผ is a multiplicative hyperring.

Theorem 5.4 (First Isomorphism Theorem). Let ๐œ™ be a strong homomorphism from a hyperring ๐‘…1 into a hyperring ๐‘…2 with kernel ๐พ. Then, ๐‘…1/๐พ is strongly isomorphic to Im๐œ™.

Proof. Define a map ๐‘“โˆถ๐‘…1/๐พโ†’Im๐œ™ by ๐‘“(๐‘ฅ)=๐œ™(๐‘ฅ) for all ๐‘ฅโˆˆ๐‘…1.
By Theorem 4.1, this map ๐‘“ is a strong isomorphism from canonical hypergroup ๐‘…1/๐พ onto Im๐œ™. Now, ๐‘“๎€ท๐‘ฅโŠ—๐‘ฆ๎€ธ=๐‘“๎€ท๎€ฝ=๎€ฝ๐‘“๎€ท๐‘งโˆถ๐‘งโˆˆ๐‘ฅ๐‘ฆ๎€พ๎€ธ๐‘ง๎€ธ๎€พ๐‘“๎€ทโˆถ๐‘งโˆˆ๐‘ฅ๐‘ฆ={๐œ™(๐‘ง)โˆถ๐‘งโˆˆ๐‘ฅ๐‘ฆ},๐‘ฅ๎€ธ๐‘“๎€ท๐‘ฆ๎€ธ=๐œ™(๐‘ฅ)๐œ™(๐‘ฆ)=๐œ™(๐‘ฅ๐‘ฆ)={๐œ™(๐‘ง)โˆถ๐‘งโˆˆ๐‘ฅ๐‘ฆ}.(5.4)
Thus, ๐‘“(๐‘ฅโŠ—๐‘ฆ)=๐‘“(๐‘ฅ)๐‘“(๐‘ฆ). Hence, ๐‘“ is a strong hyperring isomorphism.

Corollary 5.5. Let ๐œ™ be a strong homomorphism from a hyperring ๐‘…1 onto a hyperring ๐‘…2 with kernel ๐พ. Then, ๐‘…1/๐พ is strongly isomorphic to ๐‘…2.

Theorem 5.6 (Second Isomorphism Theorem). If ๐ผ and ๐ฝ are hyperideals of a hyperring ๐‘…, then ๐ฝ/(๐ผโˆฉ๐ฝ)โ‰…(๐ผ+๐ฝ)/๐ผ.

Proof. We can consider the hyperideal ๐ผ+๐ฝ of the hyperring ๐‘… as a hyperring ๐ผ+๐ฝ for which ๐ผ is a hyperideal. Similarly, hyperideal ๐ฝ of the hyperring ๐‘… as a hyperring ๐ฝ for which (๐ผโˆฉ๐ฝ) is a hyperideal.
Define ๐‘”โˆถ๐ฝโ†’(๐ผ+๐ฝ)/๐ผ by ๐‘”(๐‘)=๐‘+๐ผ for every ๐‘โˆˆ๐ฝ. By Theorem 4.3,๐‘” is strong isomorphism from canonical hypergroup ๐ฝ onto the canonical hypergroup (๐ผ+๐ฝ)/๐ผ. Now, ๐‘”(๐‘Ž๐‘)=๐‘”({๐‘ฅโˆถ๐‘ฅโˆˆ๐‘Ž๐‘})={๐‘”(๐‘ฅ)โˆถ๐‘ฅโˆˆ๐‘Ž๐‘}={๐‘ฅ+๐ผโˆถ๐‘ฅโˆˆ๐‘Ž๐‘}=(๐‘Ž+๐ผ)(๐‘+๐ผ)=๐‘”(๐‘Ž)๐‘”(๐‘). Thus, ๐‘” is strong isomorphism from hyperring ๐ฝ onto the hyperring (๐ผ+๐ฝ)/๐ผ. Also, from Theorem 4.3,Ker๐‘”=๐ผโˆฉ๐ฝ. Hence, by First Isomorphism Theorem of hyperrings, ๐ฝ/(๐ผโˆฉ๐ฝ)โ‰…(๐ผ+๐ฝ)/๐ผ.

Theorem 5.7 (Third Isomorphism Theorem). If ๐ผ and ๐ฝ are hyperideals of a hyperring ๐‘… such that ๐ผโŠ†๐ฝ, then ๐‘…/๐ฝโ‰…(๐‘…/๐ผ)/(๐ฝ/๐ผ).

Proof. Define a map โ„Žโˆถ๐‘…/๐ฝโ†’๐‘…/๐‘€ by โ„Ž(๐‘ฅ+๐ผ)=๐‘ฅ+๐ฝ. Then, โ„Ž is a strong onto homomorphism of hyperring with kernel ๐ฝ/๐ผ. Therefore, by the First Isomorphism Theorem of hyperrings, ๐‘…/๐ฝโ‰…(๐‘…/๐ผ)/(๐ฝ/๐ผ).