Table of Contents Author Guidelines Submit a Manuscript
International Journal of Mathematics and Mathematical Sciences
Volume 2011, Article ID 615014, 18 pages
http://dx.doi.org/10.1155/2011/615014
Research Article

The Order of Hypersubstitutions of Type (2,1)

Department of Mathematics, Khon Kaen University, Khon Kaen 40002, Thailand

Received 30 December 2010; Accepted 27 March 2011

Academic Editor: H. Srivastava

Copyright © 2011 Tawhat Changphas and Wonlop Hemvong. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Denecke and S. L. Wismath, Hyperidentities and Clones, Gordon and Breach Science, Amsterdam, The Netherlands, 2003.
  2. K. Denecke and S. L. Wismath, โ€œThe monoid of hypersubstitutions of type (2),โ€ in Contributions to General Algebra, 10 (Klagenfurt, 1997), pp. 109โ€“126, Johannes Heyn, Klagenfurt, Austria, 1998. View at Google Scholar ยท View at Zentralblatt MATH
  3. T. Changphas, โ€œThe order of hypersubstitutions of type τ=(3),โ€ Algebra Colloquium, vol. 13, no. 2, pp. 307โ€“313, 2006. View at Google Scholar ยท View at Zentralblatt MATH
  4. T. Changphas and K. Denecke, โ€œThe order of hypersubstitutions of type (2; 2),โ€ Acta Mathematica Sinica, vol. 15, no. 1, pp. 1โ€“11, 1999. View at Google Scholar
  5. K. Denecke and S. L. Wismath, โ€œComplexity of terms, composition, and hypersubstitution,โ€ International Journal of Mathematics and Mathematical Sciences, vol. 2003, no. 15, pp. 959โ€“969, 2003. View at Publisher ยท View at Google Scholar ยท View at Zentralblatt MATH ยท View at MathSciNet
  6. K. Denecke, D. Lau, R. Pöschel, and D. Schweigert, โ€œHypersubstitutions, hyperequational classes and clones congruences,โ€ in Contributions to General Algebra, vol. 7, pp. 97โ€“118, 1991. View at Google Scholar
  7. K. Denecke and M. Reichel, โ€œMonoids of hypersubstitutions and M-solid varieties,โ€ in Contributions to General Algebra, 9 (Linz, 1994), pp. 117โ€“126, Hölder-Pichler-Tempsky, Vienna, Austria, 1995. View at Google Scholar
  8. T. Cangpas and K. Denecke, โ€œAll idempotent hypersubstitutions of type (2,2),โ€ Semigroup Forum, vol. 76, no. 3, pp. 525โ€“539, 2008. View at Publisher ยท View at Google Scholar ยท View at Zentralblatt MATH
  9. S. Leeratanavalee, โ€œStructural properties of generalized hypersubstitutions,โ€ Kyungpook Mathematical Journal, vol. 44, no. 2, pp. 261โ€“267, 2004. View at Google Scholar ยท View at Zentralblatt MATH
  10. S. L. Wismath, โ€œThe monoid of hypersubstitutions of type (n),โ€ Southeast Asian Bulletin of Mathematics, vol. 24, no. 1, pp. 115โ€“128, 2000. View at Publisher ยท View at Google Scholar ยท View at Zentralblatt MATH