Abstract

We establish necessary and sufficient conditions for the existence of and the expressions for the general real and complex Hermitian solutions to the classical system of quaternion matrix equations 𝐴1𝑋=𝐶1,𝑋𝐵1=𝐶2,and𝐴3𝑋𝐴3=𝐶3. Moreover, formulas of the maximal and minimal ranks of four real matrices 𝑋1,𝑋2,𝑋3, and 𝑋4 in solution 𝑋=𝑋1+𝑋2𝑖+𝑋3𝑗+𝑋4𝑘 to the system mentioned above are derived. As applications, we give necessary and sufficient conditions for the quaternion matrix equations 𝐴1𝑋=𝐶1,𝑋𝐵1=𝐶2,𝐴3𝑋𝐴3=𝐶3, and𝐴4𝑋𝐴4=𝐶4 to have real and complex Hermitian solutions.

1. Introduction

Throughout this paper, we denote the real number field by ; the complex field by ; the set of all 𝑚×𝑛 matrices over the quaternion algebra 𝑎=0+𝑎1𝑖+𝑎2𝑗+𝑎3𝑘𝑖2=𝑗2=𝑘2=𝑖𝑗𝑘=1,𝑎0,𝑎1,𝑎2,𝑎3(1.1) by 𝑚×𝑛; the identity matrix with the appropriate size by 𝐼; the transpose, the conjugate transpose, the column right space, the row left space of a matrix 𝐴 over by 𝐴𝑇,𝐴,(𝐴), 𝒩(𝐴), respectively; the dimension of (𝐴) by dim(𝐴). By [1], for a quaternion matrix 𝐴,dim(𝐴)=dim𝒩(𝐴). dim(𝐴) is called the rank of a quaternion matrix 𝐴 and denoted by 𝑟(𝐴). The Moore-Penrose inverse of matrix 𝐴 over by 𝐴 which satisfies four Penrose equations 𝐴𝐴𝐴=𝐴,𝐴𝐴𝐴=𝐴,(𝐴𝐴)=𝐴𝐴, and (𝐴𝐴)=𝐴𝐴. In this case, 𝐴 is unique and (𝐴)=(𝐴). Moreover, 𝑅𝐴 and 𝐿𝐴 stand for the two projectors 𝐿𝐴=𝐼𝐴𝐴, and 𝑅𝐴=𝐼𝐴𝐴 induced by 𝐴. Clearly, 𝑅𝐴 and 𝐿𝐴 are idempotent and satisfies (𝑅𝐴)=𝑅𝐴,(𝐿𝐴)=𝐿𝐴,𝑅𝐴=𝐿𝐴, and 𝑅𝐴=𝐿𝐴.

Hermitian solutions to some matrix equations were investigated by many authors. In 1976, Khatri and Mitra [2] gave necessary and sufficient conditions for the existence of the Hermitian solutions to the matrix equations 𝐴𝑋=𝐵,𝐴𝑋𝐵=𝐶 and 𝐴1𝑋=𝐶1,𝑋𝐵2=𝐶2,(1.2) over the complex field , and presented explicit expressions for the general Hermitian solutions to them by generalized inverses when the solvability conditions were satisfied. Matrix equation that has symmetric patterns with Hermitian solutions appears in some application areas, such as vibration theory, statistics, and optimal control theory ([37]). Groß in [8], and Liu et al. in [9] gave the solvability conditions for Hermitian solution and its expressions of 𝐴𝑋𝐴=𝐵(1.3) over in terms of generalized inverses, respectively. In [10], Tian and Liu established the solvability conditions for 𝐴3𝑋𝐴3=𝐶3,𝐴4𝑋𝐴4=𝐶4(1.4) to have a common Hermitian solution over by the ranks of coefficient matrices. In [11], Tian derived the general common Hermitian solution of (1.4). Wang and Wu in [12] gave some necessary and sufficient conditions for the existence of the common Hermitian solution to equations 𝐴1𝑋=𝐶1,𝑋𝐵2=𝐶2,𝐴3𝑋𝐴3=𝐶3,𝐴(1.5)1𝑋=𝐶1,𝑋𝐵2=𝐶2,𝐴3𝑋𝐴3=𝐶3,𝐴4𝑋𝐴4=𝐶4,(1.6) for operators between Hilbert 𝐶-modules by generalized inverses and range inclusion of matrices.

As is known to us, extremal ranks of some matrix expressions can be used to characterize nonsingularity, rank invariance, range inclusion of the corresponding matrix expressions, as well as solvability conditions of matrix equations ([4, 7, 924]). Real matrices and its extremal ranks in solutions to some complex matrix equation have been investigated by Tian and Liu ([9, 1315]). Tian [13] gave the maximal and minimal ranks of two real matrices 𝑋0 and 𝑋1 in solution 𝑋=𝑋0+𝑖𝑋1 to 𝐴𝑋𝐵=𝐶 over with its applications. Liu et al. [9] derived the maximal and minimal ranks of the two real matrices 𝑋0 and 𝑋1 in a Hermitian solution 𝑋=𝑋0+𝑖𝑋1 of (1.3), where 𝐵=𝐵. In order to investigate the real and complex solutions to quaternion matrix equations, Wang and his partners have been studying the real matrices in solutions to some quaternion matrix equations such as 𝐴𝑋𝐵=𝐶, 𝐴1𝑋𝐵1=𝐶1,𝐴2𝑋𝐵2=𝐶2,𝐴𝑋𝐴+𝐵𝑋𝐵=𝐶,(1.7) recently ([2427]). To our knowledge, the necessary and sufficient conditions for (1.5) over to have the real and complex Hermitian solutions have not been given so far. Motivated by the work mentioned above, we in this paper investigate the real and complex Hermitian solutions to system (1.5) over and its applications.

This paper is organized as follows. In Section 2, we first derive formulas of extremal ranks of four real matrices 𝑋1,𝑋2,𝑋3, and 𝑋4 in quaternion solution 𝑋=𝑋1+𝑋2𝑖+𝑋3𝑗+𝑋4𝑘 to (1.5) over , then give necessary and sufficient conditions for (1.5) over to have real and complex solutions as well as the expressions of the real and complex solutions. As applications, we in Section 3 establish necessary and sufficient conditions for (1.6) over to have real and complex solutions.

2. The Real and Complex Hermitian Solutions to System (1.5) Over

In this section, we first give a solvability condition and an expression of the general Hermitian solution to (1.5) over , then consider the maximal and minimal ranks of four real matrices 𝑋1,𝑋2,𝑋3, and 𝑋4 in solution 𝑋=𝑋1+𝑋2𝑖+𝑋3𝑗+𝑋4𝑘 to (1.5) over , last, investigate the real and complex Hermitian solutions to (1.5) over .

For an arbitrary matrix 𝑀𝑡=𝑀𝑡1+𝑀𝑡2𝑖+𝑀𝑡3𝑗+𝑀𝑡4𝑘𝑚×𝑛 where 𝑀𝑡1,𝑀𝑡2,𝑀𝑡3, and 𝑀𝑡4 are real matrices, we define a map 𝜙() from 𝑚×𝑛 to 4𝑚×4𝑛 by 𝜙𝑀𝑡=𝑀𝑡1𝑀𝑡2𝑀𝑡3𝑀𝑡4𝑀𝑡2𝑀𝑡1𝑀𝑡4𝑀𝑡3𝑀𝑡3𝑀𝑡4𝑀𝑡1𝑀𝑡2𝑀𝑡4𝑀𝑡3𝑀𝑡2𝑀𝑡1.(2.1) By (2.1), it is easy to verify that 𝜙() satisfies the following properties.(a)𝑀=𝑁𝜙(𝑀)=𝜙(𝑁). (b)𝜙(𝑘𝑀+𝑙𝑁)=𝑘𝜙(𝑀)+𝑙𝜙(𝑁),𝜙(𝑀𝑁)=𝜙(𝑀)𝜙(𝑁),𝑘,𝑙.(c)𝜙(𝑀)=𝜙𝑇(𝑀), 𝜙(𝑀)=𝜙(𝑀). (d)𝜙(𝑀)=𝑇𝑚1𝜙(𝑀)𝑇𝑛=𝑅𝑚1𝜙(𝑀)𝑅𝑛=𝑆𝑚1𝜙(𝑀)𝑆𝑛, where 𝑡=𝑚,𝑛, 𝑇𝑡=0𝐼𝑡𝐼00𝑡000000𝐼𝑡00𝐼𝑡0,𝑅𝑡=00𝐼𝑡0000𝐼𝑡𝐼𝑡0000𝐼𝑡00,𝑆𝑡=000𝐼𝑡00𝐼𝑡00𝐼𝑡𝐼00𝑡000.(2.2)(e)𝑟[𝜙(𝑀)]=4𝑟(𝑀). (f)𝑀=𝑀𝜙𝑇(𝑀)=𝜙(𝑀), 𝑀=𝑀𝜙𝑇(𝑀)=𝜙(𝑀).

The following lemmas provide us with some useful results over , which can be generalized to .

Lemma 2.1 (see [2, Lemma  2.1]). Let 𝐴𝑚×𝑛,𝐵=𝐵𝑚×𝑚 be known, 𝑋𝑛×𝑛 unknown; then the system (1.3) has a Hermitian solution if and only if 𝐴𝐴𝐵=𝐵.(2.3) In that case, the general Hermitian solution of (1.3) can be expressed as 𝑋=𝐴𝐵𝐴+𝐿𝐴𝑉+𝑉𝐿𝐴,(2.4) where 𝑉 is arbitrary matrix over with compatible size.

Lemma 2.2 (see [12, Corollary  3.4]). Let 𝐴1,𝐶1𝑚×𝑛;𝐵1,𝐶2𝑛×𝑠;𝐴3𝑟×𝑛;𝐶3𝑟×𝑟 be known, 𝑋𝑛×𝑛 unknown, and 𝐹=𝐵1𝐿𝐴1,𝑀=𝑆𝐿𝐹,𝑆=𝐴3𝐿𝐴1,𝐷=𝐶2𝐵1𝐴1𝐶1,𝐽=𝐴1𝐶1+𝐹𝐷,𝐺=𝐶3𝐴3(𝐽+𝐿𝐴1𝐿𝐹𝐽)𝐴3,𝐶3=𝐶3; then the system (1.5) have a Hermitian solution if and only if 𝐴1𝐶2=𝐶1𝐵1,𝐴1𝐶1=𝐶1𝐴1,𝐵1𝐶2=𝐶2𝐵1,𝑅𝐴1𝐶1=0,𝑅𝐹𝐷=0,𝑅𝑀𝐺=0.(2.5) In that case, the general Hermitian solution of (1.5) can be expressed as 𝑋=𝐽+𝐿𝐴1𝐿𝐹𝐽+𝐿𝐴1𝐿𝐹𝑀𝐺𝑀𝐿𝐹𝐿𝐴1+𝐿𝐴1𝐿𝐹𝐿𝑀𝑉𝐿𝐹𝐿𝐴1+𝐿𝐴1𝐿𝐹𝑉𝐿𝑀𝐿𝐹𝐿𝐴1,(2.6) where 𝑉is arbitrary matrix over with compatible size.

Lemma 2.3 (see [21, Lemma  2.4]). Let 𝐴𝑚×𝑛,𝐵𝑚×𝑘,𝐶𝑙×𝑛,𝐷𝑗×𝑘, and 𝐸𝑙×𝑖. Then they satisfy the following rank equalities.(a)𝑟(𝐶𝐿𝐴)=𝑟𝐴𝐶𝑟(𝐴). (b)𝑟[𝐵𝐴𝐿𝐶]=𝑟𝐵𝐴0𝐶𝑟(𝐶). (c)𝑟𝐶𝑅𝐵𝐴=𝑟𝐶0𝐴𝐵𝑟(𝐵). (d)𝑟𝐴𝐵𝐿𝐷𝑅𝐸𝐶0=𝑟𝐴𝐵0𝐶0𝐸0𝐷0𝑟(𝐷)𝑟(𝐸).

Lemma 2.3 plays an important role in simplifying ranks of various block matrices.

Lemma 2.4 (see [11, Theorem  4.1, Corollary  4.2]). Let 𝐴=±𝐴𝑚×𝑚,𝐵𝑚×𝑛, and𝐶𝑝×𝑚 be given; then max𝑋𝑛×𝑝𝑟𝐴𝐵𝑋𝐶(𝐵𝑋𝐶)𝑟=min𝐴𝐵𝐶𝐵,𝑟𝐴𝐵0,𝑟𝐴𝐶,𝐶0min𝑋𝑛×𝑝𝑟𝐴𝐵𝑋𝐶(𝐵𝑋𝐶)=2𝑟𝐴𝐵𝐶𝑠+max1,𝑠2,(2.7) where 𝑠1𝐵=𝑟𝐴𝐵02𝑟𝐴𝐵𝐶𝐵,𝑠002=𝑟𝐴𝐶𝐶02𝑟𝐴𝐵𝐶.𝐶00(2.8) If (𝐵)(𝐶), max𝑋𝑛×𝑝𝑟𝐴𝐵𝑋𝐶(𝐵𝑋𝐶)𝑟=min𝐴𝐶𝐵,𝑟𝐴𝐵0,(2.9)min𝑋𝑛×𝑝𝑟𝐴𝐵𝑋𝐶(𝐵𝑋𝐶)=2𝑟𝐴𝐶𝐵+𝑟𝐴𝐵02𝑟𝐴𝐵𝐶0.(2.10)

Lemma 2.5 (see [28, Theorem  3.1]). Let 𝐴𝑚×𝑛,𝐵1𝑚×𝑝1,𝐵3𝑚×𝑝3,𝐵4𝑚×𝑝4,𝐶2𝑞2×𝑛,𝐶3𝑞3×𝑛, and 𝐶4𝑞4×𝑛 be given. Then the matrix equation 𝐵1𝑋1+𝑋2𝐶2+𝐵3𝑋3𝐶3+𝐵4𝑋4𝐶4=𝐴(2.11) is consistent if and only if 𝑟𝐴𝐵1𝐶20𝐶30𝐶40=𝑟0𝐵1𝐶20𝐶30𝐶40,𝑟𝐴𝐵1𝐵3𝐵4𝐶2000=𝑟0𝐵1𝐵3𝐵4𝐶2,𝑟000𝐴𝐵1𝐵3𝐶2𝐶00400=𝑟0𝐵1𝐵3𝐶2𝐶00400,𝑟𝐴𝐵1𝐵4𝐶2𝐶00300=𝑟0𝐵1𝐵4𝐶2𝐶003.00(2.12)

Theorem 2.6. System (1.5) has a Hermitian solution over if and only if the system of matrix equations 𝜙𝐴1𝑌𝑖𝑗4×4𝐶=𝜙1,𝑌𝑖𝑗4×4𝜙𝐵1𝐶=𝜙2𝐴,𝜙3𝑌𝑖𝑗4×4𝜙𝑇𝐴3𝐶=𝜙3,𝑖,𝑗=1,2,3,4,(2.13) has a symmetric solution over . In that case, the general Hermitian solution of (1.5) over can be written as 𝑋=𝑋1+𝑋2𝑖+𝑋3𝑗+𝑋4𝑘=14𝑌11+𝑌22+𝑌33+𝑌44+14𝑌12𝑌𝑇12+𝑌34𝑌𝑇34𝑖+14𝑌13𝑌𝑇13+𝑌𝑇24𝑌241𝑗+4𝑌14𝑌𝑇14+𝑌23𝑌𝑇23𝑘,(2.14) where 𝑌𝑡𝑡=𝑌𝑇𝑡𝑡;𝑡=1,2,3,4;𝑌𝑇1𝑗=𝑌𝑗1;𝑗=2,3,4;𝑌𝑇2𝑗=𝑌𝑗2;𝑗=3,4;𝑌𝑇34=𝑌43 are the general solutions of (2.13) over . Written in an explicit form, 𝑋1,𝑋2,𝑋3, and 𝑋4 in (2.14) are 𝑋1=14𝑃1𝜙𝑋0𝑃𝑇1+14𝑃2𝜙𝑋0𝑃𝑇2+14𝑃3𝜙𝑋0𝑃𝑇3+14𝑃4𝜙𝑋0𝑃𝑇4+𝑃1,𝑃2,𝑃3,𝑃4𝐿𝜙(𝐴1)𝐿𝜙(𝐹)𝐿𝜙(𝑀)𝑉𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇1𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇2𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇3𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇4+𝑃1,𝑃2,𝑃3,𝑃4𝐿𝜙(𝐴1)𝐿𝜙(𝐹)𝑉𝑇𝐿𝜙(𝑀)𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇1𝐿𝜙(𝑀)𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇2𝐿𝜙(𝑀)𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇3𝐿𝜙(𝑀)𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇4,𝑋(2.15)2=14𝑃1𝜙𝑋0𝑃𝑇214𝑃2𝜙𝑋0𝑃𝑇1+14𝑃3𝜙𝑋0𝑃𝑇414𝑃4𝜙𝑋0𝑃𝑇3+𝑃1,𝑃2,𝑃3,𝑃4𝐿𝜙(𝐴1)𝐿𝜙(𝐹)𝐿𝜙(𝑀)𝑉𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇2𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇1𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇4𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇3+𝑃2,𝑃1,𝑃4,𝑃3𝐿𝜙(𝐴1)𝐿𝜙(𝐹)𝑉𝑇𝐿𝜙(𝑀)𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇1𝐿𝜙(𝑀)𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇2𝐿𝜙(𝑀)𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇3𝐿𝜙(𝑀)𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇4,𝑋(2.16)3=14𝑃1𝜙𝑋0𝑃𝑇314𝑃3𝜙𝑋0𝑃𝑇1+14𝑃4𝜙𝑋0𝑃𝑇214𝑃2𝜙𝑋0𝑃𝑇4+𝑃1,𝑃3,𝑃4,𝑃2𝐿𝜙(𝐴1)𝐿𝜙(𝐹)𝐿𝜙(𝑀)𝑉𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇3𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇1𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇2𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇4+𝑃3,𝑃1,𝑃2,𝑃4𝐿𝜙(𝐴1)𝐿𝜙(𝐹)𝑉𝑇𝐿𝜙(𝑀)𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇1𝐿𝜙(𝑀)𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇3𝐿𝜙(𝑀)𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇4𝐿𝜙(𝑀)𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇2,𝑋(2.17)4=14𝑃1𝜙𝑋0𝑃𝑇414𝑃4𝜙𝑋0𝑃𝑇1+14𝑃2𝜙𝑋0𝑃𝑇314𝑃3𝜙𝑋0𝑃𝑇2+𝑃1,𝑃4,𝑃2,𝑃3𝐿𝜙(𝐴1)𝐿𝜙(𝐹)𝐿𝜙(𝑀)𝑉𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇4𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇1𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇3𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇2+𝑃4,𝑃1,𝑃3,𝑃2𝐿𝜙(𝐴1)𝐿𝜙(𝐹)𝑉𝑇𝐿𝜙(𝑀)𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇1𝐿𝜙(𝑀)𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇4𝐿𝜙(𝑀)𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇2𝐿𝜙(𝑀)𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇3,(2.18) where 𝑃1=𝐼𝑛,0,0,0,𝑃2=0,𝐼𝑛,0,0,𝑃3=0,0,𝐼𝑛,0,𝑃4=0,0,0,𝐼𝑛,(2.19)𝜙(𝑋0) is a particular symmetric solution to (2.13), and 𝑉 is arbitrary real matrices with compatible sizes.

Proof. Suppose that (1.5) has a Hermitian solution 𝑋 over . Applying properties (a) and (b) of 𝜙() to (1.5) yields 𝜙𝐴1𝜙𝐶(𝑋)=𝜙1𝐵,𝜙(𝑋)𝜙2𝐶=𝜙2𝐴,𝜙3𝜙(𝑋)𝜙𝑇𝐴3𝐶=𝜙3,(2.20) implying that 𝜙(𝑋) is a real symmetric solution to (2.13).
Conversely, suppose that (2.13) has a real symmetric solution 𝑌𝑌=𝑇=𝑌𝑖𝑗4×4,𝑖,𝑗=1,2,3,4.(2.21) That is, 𝜙𝐴1𝐶𝑌=𝜙1,𝐵𝑌𝜙2𝐶=𝜙2𝐴,𝜙3𝑌𝜙𝑇𝐴3𝐶=𝜙3,(2.22) then by property (𝑑) of 𝜙(), 𝑇𝑚1𝜙𝐴1𝑇𝑛𝑌=𝑇𝑚1𝜙𝐶1𝑇𝑛,𝑌𝑇𝑛1𝜙𝐵2𝑇𝑠=𝑇𝑛1𝜙𝐶2𝑇𝑠,𝑇𝑟1𝜙𝐴3𝑇𝑛𝑌𝑇𝑛1𝜙𝑇𝐴3𝑇𝑟=𝑇𝑟1𝜙𝐶3𝑇𝑟,𝑅𝑚1𝜙𝐴1𝑅𝑛𝑌=𝑅𝑚1𝜙𝐶1𝑅𝑛,𝑌𝑅𝑛1𝜙𝐵2𝑅𝑠=𝑅𝑛1𝜙𝐶2𝑅𝑠,𝑅𝑟1𝜙𝐴3𝑅𝑛𝑌𝑅𝑛𝜙𝑇𝐴3𝑅𝑟=𝑅𝑟1𝜙𝐶3𝑅𝑟,𝑆𝑚1𝜙𝐴1𝑆𝑛𝑌=𝑆𝑚1𝜙𝐶1𝑆𝑛,𝑌𝑆𝑛1𝜙𝐵2𝑆𝑠=𝑆𝑛1𝜙𝐶2𝑆𝑠,𝑆𝑟1𝜙𝐴3𝑆𝑛𝑌𝑆𝑛1𝜙𝑇𝐴3𝑆𝑟=𝑆𝑟1𝜙𝐶3𝑆𝑟.(2.23) Hence, 𝜙𝐴1𝑇𝑛𝑌𝑇𝑛1𝐶=𝜙1,𝑇𝑛𝑌𝑇𝑛1𝜙𝐵2𝐶=𝜙2𝐴,𝜙3𝑇𝑛𝑌𝑇𝑛1𝜙𝑇𝐴3𝐶=𝜙3,𝜙𝐴1𝑅𝑛𝑌𝑅𝑛1𝐶=𝜙1,𝑅𝑛𝑌𝑅𝑛1𝜙𝐵2𝐶=𝜙2𝐴,𝜙3𝑅𝑛𝑌𝑅𝑛1𝜙𝑇𝐴3𝐶=𝜙3,𝜙𝐴1𝑆𝑛𝑌𝑆𝑛1𝐶=𝜙1,𝑆𝑛𝑌𝑆𝑛1𝜙𝐵2𝐶=𝜙2𝐴,𝜙3𝑆𝑛𝑌𝑆𝑛1𝜙𝑇𝐴3𝐶=𝜙3,(2.24) implying that 𝑇𝑛𝑌𝑇𝑛1,𝑅𝑛𝑌𝑅𝑛1, and 𝑆𝑛𝑌𝑆𝑛1 are also symmetric solutions of (2.13). Thus, 14𝑌+𝑇𝑛𝑌𝑇𝑛1+𝑅𝑛𝑌𝑅𝑛1+𝑆𝑛𝑌𝑆𝑛1(2.25) is a symmetric solution of (2.13), where 𝑌+𝑇𝑛𝑌𝑇𝑛1+𝑅𝑛𝑌𝑅𝑛1+𝑆𝑛𝑌𝑆𝑛1=𝑌𝑖𝑗4×4𝑌,𝑖=1,2,3,4,11=𝑌11+𝑌22+𝑌33+𝑌44,𝑌12=𝑌12𝑌𝑇12+𝑌34𝑌𝑇34,𝑌13=𝑌13𝑌𝑇13+𝑌𝑇24𝑌24,𝑌14=𝑌14𝑌𝑇14+𝑌23𝑌𝑇23,𝑌21=𝑌𝑇12𝑌12+𝑌𝑇34𝑌34,𝑌22=𝑌11+𝑌22+𝑌33+𝑌44,𝑌23=𝑌14𝑌𝑇14+𝑌23𝑌𝑇23,𝑌24=𝑌13𝑌𝑇13+𝑌𝑇24𝑌24,𝑌31=𝑌𝑇13𝑌13+𝑌24𝑌𝑇24,𝑌32=𝑌14𝑌𝑇14+𝑌23𝑌𝑇23,𝑌33=𝑌11+𝑌22+𝑌33+𝑌44,𝑌34=𝑌12𝑌𝑇12+𝑌34𝑌𝑇34,𝑌41=𝑌𝑇14𝑌14+𝑌𝑇23𝑌23,𝑌42=𝑌13𝑌𝑇13+𝑌𝑇24𝑌24,𝑌43=𝑌12𝑌𝑇12+𝑌34𝑌𝑇34,𝑌44=𝑌11+𝑌22+𝑌33+𝑌44.(2.26) Let 1𝑋=4𝑌11+𝑌22+𝑌33+𝑌44+14𝑌12𝑌𝑇12+𝑌34𝑌𝑇34𝑖+14𝑌13𝑌𝑇13+𝑌𝑇24𝑌241𝑗+4𝑌14𝑌𝑇14+𝑌23𝑌𝑇23𝑘.(2.27) Then by (2.1), 𝜙𝑋=14𝑌+𝑇𝑛𝑌𝑇𝑛1+𝑅𝑛𝑌𝑅𝑛1+𝑆𝑛𝑌𝑆𝑛1.(2.28) Hence, by the property (a), we know that 𝑋 is a Hermitian solution of (1.5). Observe that 𝑌𝑖𝑗,𝑖,𝑗=1,2,3,4, in (2.13) can be written as 𝑌𝑖𝑗=𝑃𝑖𝑌𝑃𝑇𝑗.(2.29) From Lemma 2.2, the general Hermitian solution to (2.13) can be written as 𝑋𝑌=𝜙0+4𝐿𝜙(𝐴1)𝐿𝜙(𝐹)𝐿𝜙(𝑀)𝑉𝐿𝜙(𝐴1)𝐿𝜙(𝐹)+4𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑉𝑇𝐿𝜙(𝑀)𝐿𝜙(𝐹)𝐿𝜙(𝐴1),(2.30) where 𝑉 is arbitrary. Hence, 𝑌𝑖𝑗=𝑃𝑖𝜙𝑋0𝑃𝑇𝑗+4𝑃𝑖𝐿𝜙(𝐴1)𝐿𝜙(𝐹)𝐿𝜙(𝑀)𝑉𝐿𝜙(𝐴1)𝐿𝜙(𝐹)𝑃𝑇𝑗+4𝑃𝑖𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑉𝑇𝐿𝜙(𝑀)𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇𝑗,(2.31) where 𝑖,𝑗=1,2,3,4, substituting them into (2.14), yields the four real matrices 𝑋1,𝑋2,𝑋3, and 𝑋4 in (2.15)–(2.18).

Now we consider the maximal and minimal ranks of four real matrices 𝑋1,𝑋2,𝑋3, and 𝑋4 in solution 𝑋=𝑋1+𝑋2𝑖+𝑋3𝑗+𝑋4𝑘 to (1.5) over .

Theorem 2.7. Suppose that system (1.5) over has a Hermitian solution, and 𝐴1=𝐴11+𝐴12𝑖+𝐴13𝑗+𝐴14𝑘,𝐶1=𝐶11+𝐶12𝑖+𝐶13𝑗+𝐶14𝑘𝑚×𝑛𝐵1=𝐵11+𝐵12𝑖+𝐵13𝑗+𝐵14𝑘,𝐶2=𝐶21+𝐶22𝑖+𝐶23𝑗+𝐶24𝑘𝑛×𝑠,𝐴3=𝐴31+𝐴32𝑖+𝐴33𝑗+𝐴34𝑘𝑟×𝑛,𝐶3=𝐶31+𝐶32𝑖+𝐶33𝑗+𝐶34𝑘𝑟×𝑟𝑆1=𝑋1𝑛×𝑛𝐴1𝑋=𝐶1,𝑋𝐵1=𝐶2,𝐴3𝑋𝐴3=𝐶3𝑋=𝑋1+𝑋2𝑖+𝑋3𝑗+𝑋4𝑘,𝑆2=𝑋2𝑝×𝑞𝐴1𝑋=𝐶1,𝑋𝐵1=𝐶2,𝐴3𝑋𝐴3=𝐶3𝑋=𝑋1+𝑋2𝑖+𝑋3𝑗+𝑋4𝑘,𝑆3=𝑋3𝑝×𝑞𝐴1𝑋=𝐶1,𝑋𝐵1=𝐶2,𝐴3𝑋𝐴3=𝐶3𝑋=𝑋1+𝑋2𝑖+𝑋3𝑗+𝑋4𝑘,𝑆4=𝑋4𝑝×𝑞𝐴1𝑋=𝐶1,𝑋𝐵1=𝐶2,𝐴3𝑋𝐴3=𝐶3𝑋=𝑋1+𝑋2𝑖+𝑋3𝑗+𝑋4𝑘,𝐿21=𝐶21𝐶22𝐶23𝐶24,𝐿11=𝐶11𝐶12𝐶13𝐶14,𝑀31=𝐴32𝐴33𝐴34𝐴31𝐴34𝐴33𝐴34𝐴31𝐴32𝐴33𝐴32𝐴31,𝑀11=𝐴12𝐴13𝐴14𝐴11𝐴14𝐴13𝐴14𝐴11𝐴12𝐴13𝐴12𝐴11,𝑀12=𝐴11𝐴13𝐴14𝐴12𝐴14𝐴13𝐴13𝐴11𝐴12𝐴14𝐴12𝐴11,𝑀13=𝐴11𝐴12𝐴14𝐴12𝐴11𝐴13𝐴13𝐴14𝐴12𝐴14𝐴13𝐴11,𝑀14=𝐴11𝐴12𝐴13𝐴12𝐴11𝐴14𝐴13𝐴14𝐴11𝐴14𝐴13𝐴12,𝑁11=𝐵12𝐵11𝐵14𝐵13𝐵13𝐵14𝐵11𝐵12𝐵14𝐵13𝐵12𝐵11,𝑁12=𝐵11𝐵12𝐵13𝐵14𝐵13𝐵14𝐵11𝐵12𝐵14𝐵13𝐵12𝐵11,𝑁13=𝐵11𝐵12𝐵13𝐵14𝐵12𝐵11𝐵14𝐵13𝐵14𝐵13𝐵12𝐵11,𝑁14=𝐵11𝐵12𝐵13𝐵14𝐵12𝐵11𝐵14𝐵13𝐵13𝐵14𝐵11𝐵12.(2.32) Then the maximal and minimal ranks of 𝑋𝑖,𝑖=1,2,3,4, in Hermitian solution 𝑋=𝑋1+𝑋2𝑖+𝑋3𝑗+𝑋4𝑘 to (1.5) are given bymax𝑋𝑖𝑆𝑖𝑟𝑋𝑖𝑡=min1𝑖,,𝑡(2.33)min𝑋𝑖𝑆𝑖𝑟𝑋𝑖=2𝑡1𝑖+𝑡2𝑡2𝑖,(2.34) where 𝑡1𝑖𝐿=𝑟21𝑁𝑇1𝑖𝐿11𝑀1𝑖𝐵4𝑟1𝐴1+𝑛,𝑡=𝑟0𝑀𝑇31𝑁11𝑀𝑇11𝑀31𝜙𝐶3𝜙𝐴3𝜙𝐶2𝜙𝐴3𝜙𝑇𝐶1𝑁𝑇11𝜙𝑇𝐶2𝜙𝑇𝐴3𝜙𝑇𝐶2𝜙𝐵1𝜙𝑇𝐶2𝜙𝑇𝐴1𝑀11𝜙𝐶1𝜙𝑇𝐴3𝜙𝐶1𝜙𝐵1𝜙𝐶1𝜙𝑇𝐴1𝐴8𝑟3𝐵1𝐴1𝑡+2𝑛,2𝑖=𝑟0𝑁1𝑖𝑀𝑇1𝑖𝑀31𝜙𝐴3𝜙𝐶2𝜙𝐴3𝜙𝑇𝐶1𝑁𝑇11𝜙𝑇𝐶2𝜙𝐵1𝜙𝑇𝐶2𝜙𝑇𝐴1𝑀11𝜙𝐶1𝜙𝐵1𝜙𝐶1𝜙𝑇𝐴1𝐴4𝑟3𝐵1𝐴1𝐵4𝑟1𝐴1+2𝑛.(2.35)

Proof. We only prove the case that 𝑖=1. Similarly, we can get the results that 𝑖=2,3,4. Let 14𝑃1𝜙𝑋0𝑃𝑇1+14𝑃2𝜙𝑋0𝑃𝑇2+14𝑃3𝜙𝑋0𝑃𝑇3+14𝑃4𝜙𝑋0𝑃𝑇4𝑃=𝐴,1,𝑃2,𝑃3,𝑃4𝐿𝜙(𝐴1)𝐿𝜙(𝐹)𝐿𝜙(𝑀)𝐿=𝐵,𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇1𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇2𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇3𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇4=𝐶;(2.36) note that 𝐿𝑀 is Hermtian; then 𝐿𝜙(𝑀) is symmetric; hence (2.15) can be written as 𝑋1=𝐴+𝐵𝑉𝐶+(𝐵𝑉𝐶).(2.37) Note that 𝐴=𝐴 and (𝐵)(𝐶); applying (2.9) and (2.10) to (2.37) yields max𝑋1𝑆1𝑟𝑋1𝑟=min𝐴,𝐶𝐵,𝑟𝐴𝐵0,(2.38)min𝑋1𝑆1𝑟𝑋1=2𝑟𝐴,𝐶𝐵+𝑟𝐴𝐵02𝑟𝐴𝐵𝐶0.(2.39) Let 𝑃1,𝑃2,𝑃3,𝑃4𝑎=𝑃,𝑖=𝜙𝐴𝑖𝐴0000𝜙𝑖𝐴0000𝜙𝑖0𝐴000𝜙𝑖𝑏,𝑖=1,3,1=𝜙𝐵1𝐵0000𝜙1𝐵0000𝜙10𝐵000𝜙1.(2.40) Note that 𝜙(𝑋0) is a particular solution to (2.13), it is not difficult to find by Lemma 2.3, block Gaussian elimination, and property (𝑒) of 𝜙() that 𝑟𝐴,𝐶=𝑟𝐴𝑃0𝑏𝑇10𝑎1𝜙𝐴4𝑟1[]14𝑟𝜙(𝐹)=𝑟0𝑃4𝜙𝑇𝐶2𝑃𝑇1𝑏𝑇114𝜙𝐶1𝑃𝑇1𝑎1𝜙𝐵4𝑟1𝜙𝐴10𝑃=𝑟1𝜙,0,0,0𝑇𝐶2𝑃𝑇1𝑏𝑇1𝜙𝐶1𝑃𝑇1𝑎1𝜙𝐵4𝑟1𝜙𝐴1𝐿=𝑟21𝑁𝑇1𝑖𝐿11𝑀1𝑖𝜙𝐵4𝑟1𝜙𝐴1𝜙𝐵+3𝑟1𝜙𝐴1𝐿+𝑛=𝑟21𝑁𝑇1𝑖𝐿11𝑀1𝑖𝐵4𝑟1𝐴1+𝑛.(2.41) Note that 𝐿𝐴=𝑅𝐴, then 𝐿𝜙(𝐴)=𝑅𝜙(𝐴); hence𝑟𝐵𝐴𝐵0𝑃=𝑟𝐴𝑃000𝑇0𝑎𝑇3𝑏1𝑎𝑇10𝑎30000𝑏𝑇10000𝑎1[][]𝜙𝐴0008𝑟𝜙(𝑀)8𝑟𝜙(𝐹)8𝑟1=𝑟0𝑀𝑇31𝑁11𝑀𝑇11𝑀31𝜙𝐶3𝜙𝐴3𝜙𝐶2𝜙𝐴3𝜙𝑇𝐶1𝑁𝑇11𝜙𝑇𝐶2𝜙𝑇𝐴3𝜙𝑇𝐶2𝜙𝐵1𝜙𝑇𝐶2𝜙𝑇𝐴1𝑀11𝜙𝐶1𝜙𝑇𝐴3𝜙𝐶1𝜙𝐵1𝜙𝐶1𝜙𝑇𝐴1𝜙𝐴8𝑟3𝜙𝐵1𝜙𝐴1𝜙𝐴+6𝑟3𝜙𝐵1𝜙𝐴1+2𝑛=𝑟0𝑀𝑇31𝑁11𝑀𝑇11𝑀31𝜙𝐶3𝜙𝐴3𝜙𝐶2𝜙𝐴3𝜙𝑇𝐶1𝑁𝑇11𝜙𝑇𝐶2𝜙𝑇𝐴3𝜙𝑇𝐶2𝜙𝐵1𝜙𝑇𝐶2𝜙𝑇𝐴1𝑀11𝜙𝐶1𝜙𝑇𝐴3𝜙𝐶1𝜙𝐵1𝜙𝐶1𝜙𝑇𝐴1𝐴8𝑟3𝐵1𝐴1+2𝑛.(2.42) Similarly, we can obtain 𝑟𝐴𝐵𝐶0=𝑟0𝑁11𝑀𝑇11𝑀31𝜙𝐴3𝜙𝐶2𝜙𝐴3𝜙𝑇𝐶1𝑁𝑇11𝜙𝑇𝐶2𝜙𝐵1𝜙𝑇𝐶2𝜙𝑇𝐴1𝑀11𝜙𝐶1𝜙𝐵1𝜙𝐶1𝜙𝑇𝐴1𝐴4𝑟3𝐵1𝐴1𝐵4𝑟1𝐴1+2𝑛,(2.43) Substituting (2.41) and (2.43) into (2.38) and (2.39) yields (2.33) and (2.34), that is 𝑖=1.

Corollary 2.8. Suppose system (1.5) over have a Hermitian solution. Then we have the following.
(a) System (1.5) has a real hermtian solution if and only if 𝐿2𝑟21𝑁𝑇1𝑖𝐿11𝑀1𝑖+𝑟0𝑀𝑇31𝑁11𝑀𝑇11𝑀31𝜙𝐶3𝜙𝐴3𝜙𝐶2𝜙𝐴3𝜙𝑇𝐶1𝑁𝑇11𝜙𝑇𝐶2𝜙𝑇𝐴3𝜙𝑇𝐶2𝜙𝐵1𝜙𝑇𝐶2𝜙𝑇𝐴1𝑀11𝜙𝐶1𝜙𝑇𝐴3𝜙𝐶1𝜙𝐵1𝜙𝐶1𝜙𝑇𝐴1=2𝑟0𝑁1𝑖𝑀𝑇1𝑖𝑀31𝜙𝐴3𝜙𝐶2𝜙𝐴3𝜙𝑇𝐶1𝑁𝑇11𝜙𝑇𝐶2𝜙𝐵1𝜙𝑇𝐶2𝜙𝑇𝐴1𝑀11𝜙𝐶1𝜙𝐵1𝜙𝐶1𝜙𝑇𝐴1(2.44) hold when 𝑖=2,3,4. In that case, the real solution of (1.5) can be expressed as 𝑋=𝑋1 in (2.15).
(b) System (1.5) has a complex solution if and only if (2.44) hold when 𝑖=3,4 or 𝑖=2,4 or 𝑖=2,3. In that case, the complex solutions of (1.5) can be expressed as 𝑋=𝑋1+𝑋2𝑖 or 𝑋=𝑋1+𝑋3𝑗 or 𝑋=𝑋1+𝑋4𝑘, where 𝑋1,𝑋2,𝑋3, and 𝑋4 are expressed as (2.15), (2.16), (2.17), and (2.18), respectively.

Proof. From (2.34) we can get the necessary and sufficient conditions for 𝑋𝑖=0,𝑖=1,2,3,4. Thus we can get the results of this Corollary.

3. Solvability Conditions for Real and Complex Hermitian Solutions to (1.6) Over

In this section, using the results of Theorem 2.6, Theorem 2.7, and Corollary 2.8, we give necessary and sufficient conditions for (1.6) over to have real and complex Hermitian solutions.

Theorem 3.1. Let 𝐴1,𝐴3,𝐵1,𝐶1,𝐶2, and 𝐶3 be defined in Lemma 2.2, 𝐴4𝑙×𝑛,𝐶4𝑙×𝑙, and suppose that system (1.5) and the matrix equation 𝐴4𝑌𝐴4=𝐶4 over have Hermitian solutions 𝑋 and 𝑌𝑛×𝑛, respectively. Then system (1.6) over has a real Hermitian solution if and only if (2.44) hold when 𝑖=2,3,4, and 𝑟0𝑀𝑇31𝑀31𝜙𝐶3𝑀=2𝑟31𝑟,(3.1)0𝑀𝑇41000𝑀𝑇411𝜙𝐵1𝜙𝑇𝐴1𝑀41𝜙𝐶4𝜙𝐴4𝜙𝐶2𝜙𝐴4𝜙𝑇𝐶1𝑀=𝑟41𝑀+𝑟𝑇41𝑀00𝑇411𝜙𝐵1𝜙𝑇𝐴1,(3.2)𝑟00𝑀𝑇41𝑀41𝑀411𝜙𝐶40𝜙𝑇𝐵1𝜙𝑇𝐶2𝜙𝑇𝐴4𝐴0𝜙1𝜙𝐶1𝜙𝑇𝐴4𝑀=𝑟41𝑀+𝑟41𝑀4110𝜙𝑇𝐵1𝐴0𝜙1,𝑟00𝑀𝑇4100000𝑀𝑇411𝜙𝑇𝐴3𝜙𝐵1𝜙𝑇𝐴1𝑀41𝑀411𝜙𝐶4𝐴0000𝜙3𝐶0𝜙3𝜙𝐴3𝜙𝐶2𝜙𝐴3𝜙𝑇𝐶10𝜙𝑇𝐵10𝜙𝑇𝐶2𝜙𝑇𝐴3𝜙𝑇𝐶2𝜙𝐵1𝜙𝑇𝐶2𝜙𝑇𝐴1𝐴0𝜙1𝐶0𝜙1𝜙𝑇𝐴3𝜙𝐶1𝜙𝐵1𝜙𝐶1𝜙𝑇𝐴1𝑀=2𝑟41𝑀411𝐴0𝜙30𝜙𝑇𝐵1𝐴0𝜙1,𝑟00𝑀𝑇410000𝑀𝑇411𝜙𝐵1𝜙𝑇𝐴1𝑀41𝑀411𝜙𝐶4000𝜙𝑇𝐵10𝜙𝑇𝐵1𝜙𝐶2𝜙𝑇𝐵1𝜙𝑇𝐶1𝐴0𝜙1𝐶0𝜙1𝜙𝐵1𝜙𝐶1𝜙𝑇𝐴1𝑀=2𝑟41𝑀4110𝜙𝑇𝐵1𝐴0𝜙1,(3.3) where 𝑀41=𝐴42𝐴43𝐴44𝐴41𝐴44𝐴43𝐴44𝐴41𝐴42𝐴43𝐴42𝐴41,𝑀411=𝐴21000𝐴22000𝐴23000𝐴24000.(3.4)

Proof. From Corollary 2.8, system (1.5) over has a real Hermitian solution if and only if (2.44) hold when 𝑖=2,3,4. By (2.15), the real Hermitian solutions of (1.5) over can be expressed as 𝑋1=14𝑃1𝜙𝑋0𝑃𝑇1+14𝑃2𝜙𝑋0𝑃𝑇2+14𝑃3𝜙𝑋0𝑃𝑇3+14𝑃4𝜙𝑋0𝑃𝑇4+𝑃1,𝑃2,𝑃3,𝑃4𝐿𝜙(𝐴1)𝐿𝜙(𝐹)𝐿𝜙(𝑀)𝑉𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇1𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇2𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇3𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇4+𝑃1,𝑃2,𝑃3,𝑃4𝐿𝜙(𝐴1)𝐿𝜙(𝐹)𝑉𝑇𝐿𝜙(𝑀)𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇1𝐿𝜙(𝑀)𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇2𝐿𝜙(𝑀)𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇3𝐿𝜙(𝑀)𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇4,(3.5) where 𝑉 is arbitrary matrices with compatible sizes.
Let 𝐴1,𝐶1=0;𝐵1,𝐶2=0;𝐴3=𝐴4; 𝐶3=𝐶4 in Corollary 2.8 and (2.15). It is easy to verify that the matrix equation 𝐴4𝑌𝐴4=𝐶4 over has a real Hermitian solution if and only if (3.1) hold and the real Hermitian solution can be expressed as 𝑌1=14𝑃1𝜙𝑌0𝑃𝑇1+14𝑃2𝜙𝑌0𝑃𝑇2+14𝑃3𝜙𝑌0𝑃𝑇3+14𝑃4𝜙𝑌0𝑃𝑇4+𝑃1,𝑃2,𝑃3,𝑃4𝐿𝜙(𝐴4)𝑈+𝑈𝑇𝐿𝜙(𝐴1)𝑃𝑇1𝐿𝜙(𝐴1)𝑃𝑇2𝐿𝜙(𝐴1)𝑃𝑇3𝐿𝜙(𝐴1)𝑃𝑇4,(3.6) where 𝜙(𝑌0) is a particular solution to 𝜙(𝐴4)(𝑌𝑖𝑗)4×4𝜙𝑇(𝐴4)=𝜙(𝐶4) and 𝑈 is arbitrary matrices with compatible sizes. The expression of 𝑌1 can also be obtained from Lemma 2.1. Let 𝑃1,𝑃2,𝑃3,𝑃41=𝑃,𝐺=4𝑃1𝜙𝑋0𝑃𝑇1+14𝑃2𝜙𝑋0𝑃𝑇2+14𝑃3𝜙𝑋0𝑃𝑇3+14𝑃4𝜙𝑋0𝑃𝑇414𝑃1𝜙𝑌0𝑃𝑇114𝑃2𝜙𝑌0𝑃𝑇214𝑃3𝜙𝑌0𝑃𝑇314𝑃4𝜙𝑌0𝑃𝑇4.(3.7) Equating 𝑋1 and 𝑌1, we obtain the following equation: 𝑋1𝑌1=𝐺+𝑃𝐿𝜙(𝐴1)𝐿𝜙(𝐹)𝐿𝜙(𝑀)𝑉𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇1𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇2𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇3𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇4+𝑃𝐿𝜙(𝐴1)𝐿𝜙(𝐹)𝑉𝑇𝐿𝜙(𝑀)𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇1𝐿𝜙(𝑀)𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇2𝐿𝜙(𝑀)𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇3𝐿𝜙(𝑀)𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇4𝑃𝐿𝜙(𝐴4)𝑈𝑈𝑇𝐿𝜙(𝐴4)𝑃𝑇1𝐿𝜙(𝐴4)𝑃𝑇2𝐿𝜙(𝐴4)𝑃𝑇3𝐿𝜙(𝐴4)𝑃𝑇4.(3.8) It is obvious that system (1.5) and the matrix equation 𝐴4𝑌𝐴4=𝐶4 over have common real Hermitian solution if and only if min𝑟(𝑋1𝑌1)=0,thatis,𝑋1𝑌1=0. Hence, we have the matrix equation 𝐺=𝑃𝐿𝜙(𝐴4)𝑈+𝑈𝑇𝐿𝜙(𝐴4)𝑃𝑇1𝐿𝜙(𝐴4)𝑃𝑇2𝐿𝜙(𝐴4)𝑃𝑇3𝐿𝜙(𝐴4)𝑃𝑇4𝑃𝐿𝜙(𝐴1)𝐿𝜙(𝐹)𝐿𝜙(𝑀)𝑉𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇1𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇2𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇3𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇4𝑃𝐿𝜙(𝐴1)𝐿𝜙(𝐹)𝑉𝑇𝐿𝜙(𝑀)𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇1𝐿𝜙(𝑀)𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇2𝐿𝜙(𝑀)𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇3𝐿𝜙(𝑀)𝐿𝜙(𝐹)𝐿𝜙(𝐴1)𝑃𝑇4.(3.9) We know by Lemma 2.5 that (3.9) is solvable if and only if the following four rank equalities hold 𝑟𝐺𝑃𝐿𝜙(𝐴4)𝑅𝜙(𝐴4)𝑃𝑇0𝑅𝜙(𝐹)𝑅𝜙(𝐴1)𝑃𝑇0=𝑟0𝑃𝐿𝜙(𝐴4)𝑅𝜙(𝐴4)𝑃𝑇0𝑅𝜙(𝐹)𝑅𝜙(𝐴1)𝑃𝑇0,𝑟𝐺𝑃𝐿𝜙(𝐴4)𝑃𝐿𝜙(𝐴1)𝐿𝜙(𝐹)𝑅𝜙(𝐴4)𝑃𝑇00=𝑟0𝑃𝐿𝜙(𝐴4)𝑃𝐿𝜙(𝐴1)𝐿𝜙(𝐹)𝑅𝜙(𝐴4)𝑃𝑇,𝑟00𝐺𝑃𝐿𝜙(𝐴4)𝑃𝐿𝜙(𝐴1)𝐿𝜙(𝐹)𝐿𝜙(𝑀)𝑅𝜙(𝐴4)𝑃𝑇𝑅00𝜙(𝑀)𝑅𝜙(𝐹)𝑅𝜙(𝐴1)𝑃𝑇00=𝑟0𝑃𝐿𝜙(𝐴4)𝑃𝐿𝜙(𝐴1)𝐿𝜙(𝐹)𝐿𝜙(𝑀)𝑅𝜙(𝐴4)𝑃𝑇𝑅00𝜙(𝑀)𝑅𝜙(𝐹)𝑅𝜙(𝐴1)𝑃𝑇,𝑟00𝐺𝑃𝐿𝜙(𝐴4)𝑃𝐿𝜙(𝐴1)𝐿𝜙(𝐹)𝑅𝜙(𝐴4)𝑃𝑇𝑅00𝜙(𝐹)𝑅𝜙(𝐴1)𝑃𝑇00=𝑟0𝑃𝐿𝜙(𝐴4)𝑃𝐿𝜙(𝐴1)𝐿𝜙(𝐹)𝑅𝜙(𝐴4)𝑃𝑇𝑅00𝜙(𝐹)𝑅𝜙(𝐴1)𝑃𝑇.00(3.10) Under the conditions that the system (1.5) and the matrix equation 𝐴4𝑌𝐴4=𝐶4 over have Hermitian solutions, it is not difficult to show by Lemma 2.3 and block Gaussian elimination that (3.10) are equivalent to the four rank equalities (3.2) and (3.3), respectively. Note that the processes are too much tedious; we omit them here. Obviously, the system (1.5) and the matrix equation 𝐴4𝑌𝐴4=𝐶4 over have a common real Hermitian solution if and only if (3.2) and (3.3) hold. Thus, the system (1.6) over has a real Hermitian solution if and only if (2.44) hold when 𝑖=2,3,4, and (3.1)–(3.3) hold.
Similarly, from Corollary 2.8, we know that the system (1.5) over has a complex Hermitian solution if and only if (2.44) hold when 𝑖=3,4, 𝑖=2,4, or; 𝑖=2,3; its complex Hermitian solutions can be expressed as 𝑋=𝑋1+𝑋2𝑖,𝑋=𝑋1+𝑋3𝑗, or 𝑋=𝑋1+𝑋4𝑘. It is also easy to derive the necessary and sufficient condition for the matrix equation 𝐴4𝑌𝐴4=𝐶4 over to have a complex Hermitian solution; its complex Hermitian solution can be expressed as 𝑌=𝑌1+𝑌2𝑖,𝑌=𝑌1+𝑌3𝑗,or 𝑌=𝑌1+𝑌4𝑘.By equating 𝑋1 and 𝑌1,𝑋2 and 𝑌2,𝑋3, and 𝑌3,𝑋4 and 𝑌4, respectively, we can derive the necessary and sufficient conditions for the system (1.6) over to have a complex Hermitian solution.

Acknowledgment

This research was supported by the Excellent Young Teacher Grant of East China University of Science and Technology (yk0157124) and the Natural Science Foundation of China (11001079).