TY - JOUR
A2 - Curto, RaĆ¼l
AU - Lang, Feng-Gong
AU - Xu, Xiao-Ping
PY - 2012
DA - 2012/08/05
TI - An Upper Bound of the Bezout Number for Piecewise Algebraic Curves over a Rectangular Partition
SP - 473582
VL - 2012
AB - A piecewise algebraic curve is a curve defined by the zero set of a bivariatespline function. Given two bivariate spline spaces Smr(Δ) and Snt(Δ) overa domain D with a partition Δ, the Bezout number BN(m,r;n,t;Δ) is definedas the maximum finite number of the common intersection points of two arbitrarypiecewise algebraic curves f(x, y)=0 and g(x, y)=0, where f(x, y)∈Smr(Δ)and g(x, y)∈Snt(Δ). In this paper, an upper bound of the Bezout number forpiecewise algebraic curves over a rectangular partition is obtained.
SN - 0161-1712
UR - https://doi.org/10.1155/2012/473582
DO - 10.1155/2012/473582
JF - International Journal of Mathematics and Mathematical Sciences
PB - Hindawi Publishing Corporation
KW -
ER -