Table of Contents Author Guidelines Submit a Manuscript
International Journal of Mathematics and Mathematical Sciences
Volume 2012 (2012), Article ID 645736, 5 pages
http://dx.doi.org/10.1155/2012/645736
Research Article

Taylor's Expansion Revisited: A General Formula for the Remainder

Department of Algebra and Mathematical Analysis, University of Almería, Almería, 04120 Andalucía, Spain

Received 22 March 2012; Accepted 31 May 2012

Academic Editor: Harvinder S. Sidhu

Copyright © 2012 José Juan Rodríguez Cano and Enrique de Amo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Akkouchi, “Improvements of some integral inequalities of H. Gauchman involving Taylor's remainder,” Divulgaciones Matemáticas, vol. 11, no. 2, pp. 115–120, 2003. View at Google Scholar · View at Zentralblatt MATH
  2. H. Gauchman, “Some integral inequalities involving Taylor's remainder. I,” Journal of Inequalities in Pure and Applied Mathematics, vol. 4, no. 1, Article ID 1, 5 pages, 2003. View at Google Scholar
  3. H. Gauchman, “Some integral inequalities involving Taylor's remainder. II,” Journal of Inequalities in Pure and Applied Mathematics, vol. 3, no. 2, Article ID 26, 9 pages, 2002. View at Google Scholar · View at Zentralblatt MATH
  4. Z. Liu, “Note on inequalities involving integral Taylor's remainder,” Journal of Inequalities in Pure and Applied Mathematics, vol. 6, no. 3, Article ID 72, 6 pages, 2005. View at Google Scholar · View at Zentralblatt MATH
  5. M. Neher, “Improved validated bounds for Taylor coefficient and for Taylor remainder series,” Journal of Computational and Applied Mathematics, vol. 152, pp. 393–404, 2003. View at Google Scholar
  6. J. Rey Pastor, P. Pi Calleja, and C. A. Trejo, Análisis Matemático, Tomo I. Kapelusz, Buenos Aires, Argentina, 1952.
  7. T. M. Apostol, Mathematical Analysis, Addison-Wesley, Reading, Mass, USA, 1974.
  8. K. Kuratowski, Introducción al Cálculo, Limusa-Wiley, Mexico City, México, 1970.
  9. W. Rudin, Principles of Mathematical Analysis, McGraw-Hill Book Co., New York, NY, USA, 1964.
  10. J. M. Ortega, Introducción al Análisis Matemático, Labor Universitaria, Barcelona, Spain, 1993.
  11. J. Dixmier, Cours de Mathematiques du Primer Cycle, Gauthiers-Villars, Paris, France, 1967.