Abstract

We have studied subclass of multivalent harmonic functions with missing coefficients in the open unit disc and obtained the basic properties such as coefficient characterization and distortion theorem, extreme points, and convolution.

1. Introduction

A continuous function ๐‘“=๐‘ข+๐‘–๐‘ฃ is a complex-valued harmonic function in a simply connected complex domain ๐ทโŠ‚โ„‚ if both ๐‘ข and ๐‘ฃ are real harmonic in ๐ท. It was shown by Clunie and Sheil-Small [1] that such harmonic function can be represented by ๐‘“=โ„Ž+๐‘”, where โ„Ž and ๐‘” are analytic in ๐ท. Also, a necessary and sufficient condition for ๐‘“ to be locally univalent and sense preserving in ๐ท is that |โ„Ž๎…ž(๐‘ง)|>|๐‘”๎…ž(๐‘ง)| (see also, [2โ€“4]).

Denote by ๐ป the family of functions ๐‘“=โ„Ž+๐‘”, which are harmonic univalent and sense-preserving in the open-unit disc ๐‘ˆ={๐‘งโˆˆโ„‚โˆถ|๐‘ง|<1} with normalization ๐‘“(0)=โ„Ž(0)=๐‘“๎…ž๐‘ง(0)โˆ’1=0.

For ๐‘šโ‰ฅ1,0โ‰ค๐›ฝ<1,and๐›พโ‰ฅ0,let ๐‘…(๐‘š,๐›ฝ,๐›พ)denote the class of all multivalent harmonic functions ๐‘“=โ„Ž+๐‘” with missing coefficients that are sense-preserving in ๐‘ˆ, and โ„Ž,๐‘” are of the form โ„Ž(๐‘ง)=๐‘ง๐‘š+โˆž๎“๐‘›=๐‘š+1๐‘Ž๐‘›+1๐‘ง๐‘›+1,๐‘”(๐‘ง)=โˆž๎“๐‘›=๐‘š๐‘๐‘›+1๐‘ง๐‘›+1(๐‘šโ‰ฅ1;๐‘งโˆˆ๐‘ˆ)(1.1) and satisfying the following condition: ๎‚ป๎€ทRe1+๐›พ๐‘’๐‘–๐œ™๎€ธ๐‘ง๐‘“๎…ž(๐‘ง)๐‘ง๎…ž๐‘“(๐‘ง)โˆ’๐›พ๐‘š๐‘’๐‘–๐œ™๎‚ผโ‰ฅ๐‘š๐›ฝ(๐‘šโ‰ฅ1;0โ‰ค๐›ฝ<1;๐›พโ‰ฅ0;๐œ™real),(1.2) where ๐‘ง๎…ž=๐œ•๎€ท๐œ•๐œƒ๐‘ง=๐‘Ÿ๐‘’๐‘–๐œƒ๎€ธ,๐‘“๎…ž๐œ•(๐‘ง)=๐‘“๎€ท๐œ•๐œƒ๐‘Ÿ๐‘’๐‘–๐œƒ๎€ธ.(1.3)

We note that:(i)๐‘…(๐‘š,๐›ฝ,1)=๐‘…(๐‘š,๐›ฝ) with ๐‘Ž๐‘š+1;๐‘๐‘šโ‰ 0 (see Jahangiri et al. [5]);(ii)๐‘…(1,๐›ฝ,๐›พ)=๐ฝ๐ป(๐›ผ,๐›ฝ,๐›พ) (see Kharinar and More [6]);(iii)๐‘…(1,๐›ฝ,1)=๐บ๐ป(๐›ฝ)with ๐‘Ž2;๐‘1โ‰ 0 (see Rosy et al. [7] and Ahuja and Jahangiri [2]).

Also, the subclass denoted by ๐‘‡(๐‘š,๐›ฝ,๐›พ) consists of harmonic functions ๐‘“=โ„Ž+๐‘”, so that โ„Ž and ๐‘” are of the form โ„Ž(๐‘ง)=๐‘ง๐‘šโˆ’โˆž๎“๐‘›=๐‘š+1๐‘Ž๐‘›+1๐‘ง๐‘›+1,๐‘”(๐‘ง)=โˆž๎“๐‘›=๐‘š๐‘๐‘›+1๐‘ง๐‘›+1๎€ท๐‘Ž๐‘›+1;๐‘๐‘›+1๎€ธ.โ‰ฅ0;๐‘šโ‰ฅ1;๐‘งโˆˆ๐‘ˆ(1.4)

We note that:(i)๐‘‡(๐‘š,๐›ฝ,1)=๐‘‡(๐‘š,๐›ฝ) with ๐‘Ž๐‘š+1;๐‘๐‘šโ‰ 0(see Jahangiri et al. [5]);(ii)๐‘‡(1,๐›ฝ,๐›พ)=๐ฝ๐ป(๐›ผ,๐›ฝ,๐›พ)(see Kharinar and More [6]);(iii)๐‘‡(1,๐›ฝ,1)=๐บ๐ป(๐›ฝ) with ๐‘Ž2;๐‘1โ‰ 0(see Rosy et al. [7] and Ahuja and Jahangiri [2]).

From Ahuja and Jahangiri [2] with slight modification and among other things proved, if ๐‘“=โ„Ž+๐‘”is of the form (1.1) and satisfies the coefficient condition โˆž๎“๐‘›=๐‘šโˆ’1๎‚ธ(๐‘›+1)โˆ’๐‘š๐›ฝ||๐‘Ž๐‘š(1โˆ’๐›ฝ)๐‘›+1||+(๐‘›+1)+๐‘š๐›ฝ||๐‘๐‘š(1โˆ’๐›ฝ)๐‘›+1||๎‚น๎€ท๐‘Žโ‰ค2๐‘š=1;๐‘Ž๐‘š+1=๐‘๐‘š๎€ธ,=0(1.5) then the harmonic function ๐‘“is sense-preserving, harmonic multivalent with missing coefficients and starlike of order ๐›ฝ(0โ‰ค๐›ฝ<1) in ๐‘ˆ.They also proved that the condition (1.5) is also necessary for the starlikeness of function ๐‘“=โ„Ž+๐‘”of the form (1.4).

In this paper, we obtain sufficient coefficient bounds for functions in the class ๐‘…(๐‘š,๐›ฝ,๐›พ). These sufficient coefficient conditions are shown to be also necessary for functions in the class ๐‘‡(๐‘š,๐›ฝ,๐›พ). Basic properties such as distortion theorem, extreme points, and convolution for the class ๐‘‡(๐‘š,๐›ฝ,๐›พ) are also obtained.

2. Coefficient Characterization and Distortion Theorem

Unless otherwise mentioned, we assume throughout this paper that ๐‘šโ‰ฅ1,0โ‰ค๐›ฝ<1,๐›พโ‰ฅ0,and๐œ™is real. We begin with a sufficient condition for functions in the class ๐‘…(๐‘š,๐›ฝ,๐›พ).

Theorem 2.1. Let ๐‘“=โ„Ž+๐‘” be such that โ„Ž and ๐‘” are given by (1.1). Furthermore, let โˆž๎“๐‘›=๐‘šโˆ’1๎‚ธ(1+๐›พ)(๐‘›+1)โˆ’๐‘š(๐›พ+๐›ฝ)||๐‘Ž๐‘š(1โˆ’๐›ฝ)๐‘›+1||+(1+๐›พ)(๐‘›+1)+๐‘š(๐›พ+๐›ฝ)||๐‘๐‘š(1โˆ’๐›ฝ)๐‘›+1||๎‚นโ‰ค2,(2.1) where ๐‘Ž๐‘š=1and๐‘Ž๐‘š+1=๐‘๐‘š=0.Then ๐‘“ is sense-preserving, harmonic multivalent in ๐‘ˆ and ๐‘“โˆˆ๐‘…(๐‘š,๐›ฝ,๐›พ).

Proof. To prove ๐‘“โˆˆ๐‘…(๐‘š,๐›ฝ,๐›พ), by definition, we only need to show that the condition (2.1) holds for ๐‘“. Substituting โ„Ž+๐‘”for ๐‘“ in (1.2), it suffices to show that โŽงโŽชโŽจโŽชโŽฉ๎€ทRe1+๐›พ๐‘’๐‘–๐œƒ๎€ธ๎‚€๐‘งโ„Ž๎…ž(๐‘ง)โˆ’๐‘ง๐‘”๎…ž๎‚๎€ท(๐‘ง)โˆ’๐‘š๐›ฝ+๐›พ๐‘’๐‘–๐œƒ๎€ธ๎‚€โ„Ž(๐‘ง)+๎‚๐‘”(๐‘ง)โ„Ž(๐‘ง)+โŽซโŽชโŽฌโŽชโŽญ๐‘”(๐‘ง)โ‰ฅ0,(2.2) where โ„Ž๎…ž(๐‘ง)=(๐œ•/๐œ•๐‘ง)โ„Ž(๐‘ง) and ๐‘”๎…ž(๐‘ง)=(๐œ•/๐œ•๐‘ง)๐‘”(๐‘ง). Substituting for โ„Ž,๐‘”,โ„Ž๎…ž, and ๐‘”๎…ž in (2.2), and dividing by ๐‘š(1โˆ’๐›ฝ)๐‘ง๐‘š, we obtain Re(๐ด(๐‘ง)/๐ต(๐‘ง))โ‰ฅ0, where ๐ด(๐‘ง)=1+โˆž๎“๐‘›=๐‘š+1๎€ท(๐‘›+1)1+๐›พ๐‘’๐‘–๐œƒ๎€ธ๎€ทโˆ’๐‘š๐›ฝ+๐›พ๐‘’๐‘–๐œƒ๎€ธ๐‘Ž๐‘š(1โˆ’๐›ฝ)๐‘›+1๐‘ง๐‘›โˆ’๐‘š+1โˆ’๎‚ต๐‘ง๐‘ง๎‚ถ๐‘šโˆž๎“๐‘›=๐‘š+1๎€ท(๐‘›+1)1+๐›พ๐‘’โˆ’๐‘–๐œƒ๎€ธ๎€ท+๐‘š๐›ฝ+๐›พ๐‘’โˆ’๐‘–๐œƒ๎€ธ๐‘๐‘š(1โˆ’๐›ฝ)๐‘›+1๐‘ง๐‘›โˆ’๐‘š+1,๐ต(๐‘ง)=1+โˆž๎“๐‘›=๐‘š+1๐‘Ž๐‘›+1๐‘ง๐‘›โˆ’๐‘š+1+๎‚ต๐‘ง๐‘ง๎‚ถ๐‘šโˆž๎“๐‘›=๐‘š+1๐‘๐‘›+1๐‘ง๐‘›โˆ’๐‘š+1.(2.3) Using the fact that Re(๐‘ค)โ‰ฅ0 if and only if |1+๐‘ค|>|1โˆ’๐‘ค| in ๐‘ˆ, it suffices to show that|๐ด(๐‘ง)+๐ต(๐‘ง)|โˆ’|๐ด(๐‘ง)โˆ’๐ต(๐‘ง)|โ‰ฅ0.Substituting for ๐ด(๐‘ง) and ๐ต(๐‘ง) gives ||||โˆ’||||=|||||๐ด(๐‘ง)+๐ต(๐‘ง)๐ด(๐‘ง)โˆ’๐ต(๐‘ง)2+โˆž๎“๐‘›=๐‘š+1๎€ท(๐‘›+1)1+๐›พ๐‘’๐‘–๐œƒ๎€ธ๎€ทโˆ’๐‘šโˆ’1+2๐›ฝ+๐›พ๐‘’๐‘–๐œƒ๎€ธ๐‘Ž๐‘š(1โˆ’๐›ฝ)๐‘›+1๐‘ง๐‘›โˆ’๐‘š+1โˆ’๎‚ต๐‘ง๐‘ง๎‚ถ๐‘šโˆž๎“๐‘›=๐‘š๎€ท(๐‘›+1)1+๐›พ๐‘’โˆ’๐‘–๐œƒ๎€ธ๎€ท+๐‘šโˆ’1+2๐›ฝ+๐›พ๐‘’โˆ’๐‘–๐œƒ๎€ธ๐‘๐‘š(1โˆ’๐›ฝ)๐‘›+1๐‘ง๐‘›โˆ’๐‘š+1|||||โˆ’|||||โˆž๎“๐‘›=๐‘š+1๎€ท(๐‘›+1)1+๐›พ๐‘’๐‘–๐œƒ๎€ธ๎€ทโˆ’๐‘š1+๐›พ๐‘’๐‘–๐œƒ๎€ธ๐‘š๐‘Ž(1โˆ’๐›ฝ)๐‘›+1๐‘ง๐‘›โˆ’๐‘š+1โˆ’๎‚ต๐‘ง๐‘ง๎‚ถโˆž๎“๐‘›=๐‘š๎€ท(๐‘›+1)1+๐›พ๐‘’โˆ’๐‘–๐œƒ๎€ธ๎€ท+๐‘š1+๐›พ๐‘’โˆ’๐‘–๐œƒ๎€ธ๐‘š๐‘(1โˆ’๐›ฝ)๐‘›+1๐‘ง๐‘›โˆ’๐‘š+1|||||โ‰ฅ2โˆ’โˆž๎“๐‘›=๐‘š+1(๐‘›+1)(1+๐›พ)โˆ’๐‘š(2๐›ฝ+๐›พโˆ’1)||๐‘Ž๐‘š(1โˆ’๐›ฝ)๐‘›+1|||๐‘ง|๐‘›โˆ’๐‘š+1โˆ’โˆž๎“๐‘›=๐‘š(๐‘›+1)(1+๐›พ)+๐‘š(2๐›ฝ+๐›พโˆ’1)||๐‘๐‘š(1โˆ’๐›ฝ)๐‘›+1|||๐‘ง|๐‘›โˆ’๐‘š+1โˆ’โˆž๎“๐‘›=๐‘š+1(๐‘›+1)(1+๐›พ)โˆ’๐‘š(1+๐›พ)||๐‘Ž๐‘š(1โˆ’๐›ฝ)๐‘›+1|||๐‘ง|๐‘›โˆ’๐‘š+1โˆ’โˆž๎“๐‘›=๐‘š(๐‘›+1)(1+๐›พ)+๐‘š(1+๐›พ)๐‘š||๐‘(1โˆ’๐›ฝ)๐‘›+1|||๐‘ง|๐‘›โˆ’๐‘š+1๎ƒฏโ‰ฅ21โˆ’โˆž๎“๐‘›=๐‘š+1(๐‘›+1)(1+๐›พ)โˆ’๐‘š(๐›ฝ+๐›พ)||๐‘Ž๐‘š(1โˆ’๐›ฝ)๐‘›+1||โˆ’โˆž๎“๐‘›=๐‘š(๐‘›+1)(1+๐›พ)+๐‘š(๐›ฝ+๐›พ)||๐‘๐‘š(1โˆ’๐›ฝ)๐‘›+1||๎ƒฐโ‰ฅ0by(2.1)(2.4)
The harmonic functions ๐‘“(๐‘ง)=๐‘ง๐‘š+โˆž๎“๐‘›=๐‘š+1๐‘š(1โˆ’๐›ฝ)๐‘ฅ(๐‘›+1)(1+๐›พ)โˆ’๐‘š(๐›ฝ+๐›พ)๐‘›๐‘ง๐‘›+1+โˆž๎“๐‘›=๐‘š๐‘š(1โˆ’๐›ฝ)(๐‘›+1)(1+๐›พ)+๐‘š(๐›ฝ+๐›พ)๐‘ฆ๐‘›๐‘ง๐‘›+1,(2.5) where โˆ‘โˆž๐‘›=๐‘š+1|๐‘ฅ๐‘›โˆ‘|+โˆž๐‘›=๐‘š|๐‘ฆ๐‘›|=1, show that the coefficient boundary given by (2.1) is sharp. The functions of the form (2.5) are in the class ๐‘…(๐‘š,๐›ฝ,๐›พ) because โˆž๎“๐‘›=๐‘š+1๎ƒฌ(1+๐›พ)(๐‘›+1)โˆ’๐‘š(๐›ฝ+๐›พ)||๐‘Ž๐‘š(1โˆ’๐›ฝ)๐‘›+1||+โˆž๎“๐‘›=๐‘š(1+๐›พ)(๐‘›+1)+๐‘š(๐›ฝ+๐›พ)||๐‘๐‘š(1โˆ’๐›ฝ)๐‘›+1||๎ƒญ=โˆž๎“๐‘›=๐‘š+1||๐‘ฅ๐‘›||+โˆž๎“๐‘›=๐‘š+1||๐‘ฆ๐‘›||=1.(2.6) This completes the proof of Theorem 2.1.

In the following theorem, it is shown that the condition (2.1) is also necessary for functions ๐‘“=โ„Ž+๐‘”, where โ„Ž and ๐‘” are of the form (1.4).

Theorem 2.2. Let ๐‘“=โ„Ž+๐‘” be such that โ„Ž and ๐‘” are given by (1.4). Then ๐‘“โˆˆ๐‘‡(๐‘š,๐›ฝ,๐›พ) if and only if โˆž๎“๐‘›=๐‘šโˆ’1๎‚ธ(1+๐›พ)(๐‘›+1)โˆ’๐‘š(๐›พ+๐›ฝ)๐‘Ž๐‘š(1โˆ’๐›ฝ)๐‘›+1+(1+๐›พ)(๐‘›+1)+๐‘š(๐›พ+๐›ฝ)๐‘๐‘š(1โˆ’๐›ฝ)๐‘›+1๎‚นโ‰ค2.(2.7)

Proof. Since ๐‘…(๐‘š,๐›ฝ,๐›พ)โŠ‚๐‘‡(๐‘š,๐›ฝ,๐›พ), we only need to prove the โ€œonly ifโ€ part of the theorem. To this end, for functions ๐‘“ of the form (1.4), we notice that the condition Re{(1+๐›พ๐‘’๐‘–๐œƒ)(๐‘ง๐‘“๎…ž(๐‘ง))/(๐‘ง๎…ž๐‘“(๐‘ง))โˆ’๐›พ๐‘š๐‘’๐‘–๐œƒ}โ‰ฅ๐‘š๐›ฝ is equivalent to โŽงโŽชโŽจโŽชโŽฉ๎€ทRe1+๐›พ๐‘’๐‘–๐œƒ๎€ธ๎‚€๐‘งโ„Ž๎…ž(๐‘ง)โˆ’๐‘ง๐‘”๎…ž๎‚๎€ท(๐‘ง)โˆ’๐‘š๐›ฝ+๐›พ๐‘’๐‘–๐œƒ๎€ธ๎‚€โ„Ž(๐‘ง)+๎‚๐‘”(๐‘ง)โ„Ž(๐‘ง)+โŽซโŽชโŽฌโŽชโŽญ๐‘”(๐‘ง)>0,(2.8) which implies that ๎ƒฏ๎€บ๐‘š๎€ทRe1+๐›พ๐‘’๐‘–๐œƒ๎€ธ๎€ทโˆ’๐‘š๐›ฝ+๐›พ๐‘’๐‘–๐œƒ๐‘ง๎€ธ๎€ป๐‘šโˆ’โˆ‘โˆž๐‘›=๐‘š+1๎€บ๎€ท1+๐›พ๐‘’๐‘–๐œƒ๎€ธ๎€ท(๐‘›+1)โˆ’๐‘š๐›ฝ+๐›พ๐‘’๐‘–๐œƒ๐‘Ž๎€ธ๎€ป๐‘›+1๐‘ง๐‘›+1๐‘ง๐‘šโˆ’โˆ‘โˆž๐‘›=๐‘š+1๐‘Ž๐‘›+1๐‘ง๐‘›+1+โˆ‘โˆž๐‘›=๐‘š๐‘๐‘›+1๐‘ง๐‘›+1โˆ’โˆ‘โˆž๐‘›=๐‘š๎€บ๎€ท1+๐›พ๐‘’๐‘–๐œƒ๎€ธ(๎€ท๐‘›+1)+๐‘š๐›ฝ+๐›พ๐‘’๐‘–๐œƒ๐‘๎€ธ๎€ป๐‘›+1๐‘ง๐‘›+1๐‘ง๐‘šโˆ’โˆ‘โˆž๐‘›=๐‘š+1๐‘Ž๐‘›+1๐‘ง๐‘›+1+โˆ‘โˆž๐‘›=๐‘š๐‘๐‘›+1๐‘ง๐‘›+1๎ƒฐ๎ƒฏ๐‘šโˆ‘=Re(1โˆ’๐›ฝ)โˆ’โˆž๐‘›=๐‘š+1๎€บ๎€ท1+๐›พ๐‘’๐‘–๐œƒ๎€ธ๎€ท(๐‘›+1)โˆ’๐‘š๐›ฝ+๐›พ๐‘’๐‘–๐œƒ๐‘Ž๎€ธ๎€ป๐‘›+1๐‘ง๐‘›โˆ’๐‘š+1โˆ‘1โˆ’โˆž๐‘›=๐‘š+1๐‘Ž๐‘›+1๐‘ง๐‘›โˆ’๐‘š+1+โˆ‘โˆž๐‘›=๐‘š๐‘๐‘›+1๐‘ง๐‘›โˆ’๐‘š+1โˆ’โˆ‘โˆž๐‘›=๐‘š๎€บ๎€ท1+๐›พ๐‘’๐‘–๐œƒ๎€ธ๎€ท(๐‘›+1)+๐‘š๐›ฝ+๐›พ๐‘’๐‘–๐œƒ๐‘๎€ธ๎€ป๐‘›+1๐‘ง๐‘›โˆ’๐‘š+1โˆ‘1โˆ’โˆž๐‘›=๐‘š+1๐‘Ž๐‘›+1๐‘ง๐‘›โˆ’๐‘š+1+โˆ‘โˆž๐‘›=๐‘š๐‘๐‘›+1๐‘ง๐‘›โˆ’๐‘š+1๎ƒฐ>0.(2.9) Since Re(๐‘’๐‘–๐œƒ)โ‰ค|๐‘’๐‘–๐œƒ|=1, the required condition is that (2.9) is equivalent to ๎ƒฏโˆ‘1โˆ’โˆž๐‘›=๐‘š+1([](1+๐›พ)(๐‘›+1)โˆ’๐‘š(๐›ฝ+๐›พ)/๐‘š(1โˆ’๐›ฝ))๐‘Ž๐‘›+1๐‘Ÿ๐‘›โˆ’๐‘š+1โˆ‘1โˆ’โˆž๐‘›=๐‘š+1๐‘Ž๐‘›+1๐‘Ÿ๐‘›โˆ’๐‘š+1+โˆ‘โˆž๐‘›=๐‘š๐‘๐‘›+1๐‘Ÿ๐‘›โˆ’๐‘š+1โˆ’โˆ‘โˆž๐‘›=๐‘š([](1+๐›พ)(๐‘›+1)+๐‘š(๐›ฝ+๐›พ)/๐‘š(1โˆ’๐›ฝ))๐‘๐‘›+1๐‘Ÿ๐‘›โˆ’๐‘š+1โˆ‘1โˆ’โˆž๐‘›=๐‘š+1๐‘Ž๐‘›+1๐‘Ÿ๐‘›โˆ’๐‘š+1+โˆ‘โˆž๐‘›=๐‘š๐‘๐‘›+1๐‘Ÿ๐‘›โˆ’๐‘š+1๎ƒฐโ‰ฅ0.(2.10) If the condition (2.7) does not hold, then the numerator in (2.10) is negative for ๐‘ง=๐‘Ÿ sufficiently close to 1. Hence there exists ๐‘ง0=๐‘Ÿ0 in (0,1) for which the quotient in (2.10) is negative. This contradicts the required condition for ๐‘“โˆˆ๐‘‡(๐‘š,๐›ฝ,๐›พ), and so the proof of Theorem 2.2 is completed.

Corollary 2.3. The functions in the class ๐‘‡(๐‘š,๐›ฝ,๐›พ)are starlike of order (๐›พ+๐›ฝ)/(1+๐›พ).

Proof. The proof follows from (1.5), by putting (2.7) in the form โˆž๎“๐‘›=๐‘šโˆ’1๎‚ธ(๐‘›+1)โˆ’๐‘š((๐›พ+๐›ฝ)/(1+๐›พ))๐‘Ž๐‘š(1โˆ’((๐›พ+๐›ฝ)/(1+๐›พ)))๐‘›+1+(๐‘›+1)+๐‘š((๐›พ+๐›ฝ)/(1+๐›พ))๐‘๐‘š(1โˆ’((๐›พ+๐›ฝ)/(1+๐›พ)))๐‘›+1๎‚นโ‰ค2.(2.11)

Theorem 2.4. Let ๐‘“โˆˆ๐‘‡(๐‘š,๐›ฝ,๐›พ). Then for |๐‘ง|=๐‘Ÿ<1, we have ||||โ‰ค๎€ท๐‘“(๐‘ง)1+๐‘๐‘š+1๐‘Ÿ๎€ธ๐‘Ÿ๐‘š+๎‚ป๐‘š(1โˆ’๐›ฝ)โˆ’๐‘š(1โˆ’๐›ฝ)+2(1+๐›พ)๐‘š(1+2๐›พ+๐›ฝ)+(1+๐›พ)๐‘๐‘š(1โˆ’๐›ฝ)+2(1+๐›พ)๐‘š+1๎‚ผ๐‘Ÿ๐‘š+2,||๐‘“๐‘š||โ‰ฅ๎€ท(๐‘ง)1โˆ’๐‘๐‘š+1๐‘Ÿ๎€ธ๐‘Ÿ๐‘šโˆ’๎‚ป๐‘š(1โˆ’๐›ฝ)โˆ’๐‘š(1โˆ’๐›ฝ)+2(1+๐›พ)๐‘š(1+2๐›พ+๐›ฝ)+(1+๐›พ)๐‘๐‘š(1โˆ’๐›ฝ)+2(1+๐›พ)๐‘š+1๎‚ผ๐‘Ÿ๐‘š+2.(2.12)

Proof. We prove the left-hand-side inequality for |๐‘“|.The proof for the right-hand-side inequality can be done by using similar arguments.
Let ๐‘“โˆˆ๐‘‡(๐‘š,๐›ฝ,๐›พ), then we have ||||=|||||๐‘ง๐‘“(๐‘ง)๐‘šโˆ’โˆž๎“๐‘›=๐‘š+1๐‘Ž๐‘›+1๐‘ง๐‘›+1+โˆž๎“๐‘›=๐‘š๐‘๐‘›+1๐‘ง๐‘›+1|||||โ‰ฅ๐‘Ÿ๐‘šโˆ’๐‘๐‘š+1๐‘Ÿ๐‘š+1โˆ’โˆž๎“๐‘›=๐‘š+1๎€ท๐‘Ž๐‘›+1+๐‘๐‘›+1๎€ธ๐‘Ÿ๐‘š+2โ‰ฅ๐‘Ÿ๐‘šโˆ’๐‘๐‘š+1๐‘Ÿ๐‘š+1โˆ’๐‘š(1โˆ’๐›ฝ)(1+๐›พ)(๐‘š+2)โˆ’๐‘š(๐›พ+๐›ฝ)โˆž๎“๐‘›=๐‘š+1(1+๐›พ)(๐‘š+2)โˆ’๐‘š(๐›พ+๐›ฝ)๎€ท๐‘Ž๐‘š(1โˆ’๐›ฝ)๐‘›+1+๐‘๐‘›+1๎€ธ๐‘Ÿ๐‘›+1โ‰ฅ๐‘Ÿ๐‘šโˆ’๐‘๐‘š+1๐‘Ÿ๐‘š+1โˆ’๐‘š(1โˆ’๐›ฝ)(1+๐›พ)(๐‘š+2)โˆ’๐‘š(๐›พ+๐›ฝ)โˆž๎“๐‘›=๐‘š+1๎‚ป(1+๐›พ)(๐‘›+1)โˆ’๐‘š(๐›พ+๐›ฝ)๐‘Ž๐‘š(1โˆ’๐›ฝ)๐‘›+1+(1+๐›พ)(๐‘›+1)+๐‘š(๐›พ+๐›ฝ)๐‘๐‘š(1โˆ’๐›ฝ)๐‘›+1๎‚ผ๐‘Ÿ๐‘›+1โ‰ฅ๎€ท1โˆ’๐‘๐‘š+1๐‘Ÿ๎€ธ๐‘Ÿ๐‘šโˆ’๐‘š(1โˆ’๐›ฝ)๎‚ป(1+๐›พ)(๐‘š+2)โˆ’๐‘š(๐›พ+๐›ฝ)1โˆ’(1+๐›พ)(๐‘š+1)+๐‘š(๐›พ+๐›ฝ)๐‘๐‘š(1โˆ’๐›ฝ)๐‘š+1๎‚ผ๐‘Ÿ๐‘š+2โ‰ฅ๎€ท1โˆ’๐‘๐‘š+1๐‘Ÿ๎€ธ๐‘Ÿ๐‘šโˆ’๎‚ป๐‘š(1โˆ’๐›ฝ)โˆ’๐‘š(1โˆ’๐›ฝ)+2(1+๐›พ)๐‘š(1+2๐›พ+๐›ฝ)+(1+๐›พ)๐‘๐‘š(1โˆ’๐›ฝ)+2(1+๐›พ)๐‘š+1๎‚ผ๐‘Ÿ๐‘š+2.(2.13) This completes the proof of Theorem 2.4.

The following covering result follows from the left-side inequality in Theorem 2.4.

Corollary 2.5. Let ๐‘“โˆˆ๐‘‡(๐‘š,๐›ฝ,๐›พ),then the set ๎‚ป๐‘คโˆถ|๐‘ค|<2(1+๐›พ)โˆ’๐‘š(1โˆ’๐›ฝ)+2(1+๐›พ)(1+๐›พ)โˆ’2๐‘š(๐›พ+๐›ฝ)๐‘๐‘š(1โˆ’๐›ฝ)+2(1+๐›พ)๐‘š+1๎‚ผ(2.14) is included in ๐‘“(๐‘ˆ).

3. Extreme Points

Our next theorem is on the extreme points of convex hulls of the class ๐‘‡(๐‘š,๐›ฝ,๐›พ), denoted by clco๐‘‡(๐‘š,๐›ฝ,๐›พ).

Theorem 3.1. Let ๐‘“=โ„Ž+๐‘” be such that โ„Ž and ๐‘” are given by (1.4). Then ๐‘“โˆˆclco๐‘‡(๐‘š,๐›ฝ,๐›พ) if and only if ๐‘“ can be expressed as ๐‘“(๐‘ง)=โˆž๎“๐‘›=๐‘š๎€บ๐‘‹๐‘›+1โ„Ž๐‘›+1(๐‘ง)+๐‘Œ๐‘›+1๐‘”๐‘›+1(๎€ป,๐‘ง)(3.1) where โ„Ž๐‘š(๐‘ง)=๐‘ง๐‘š,โ„Ž๐‘›+1(๐‘ง)=๐‘ง๐‘šโˆ’๐‘š(1โˆ’๐›ฝ)(๐‘ง1+๐›พ)(๐‘›+1)โˆ’๐‘š(๐›พ+๐›ฝ)๐‘›+1๐‘”(๐‘›=๐‘š+1,๐‘š+2,...),๐‘›+1(๐‘ง)=๐‘ง๐‘š+๐‘š(1โˆ’๐›ฝ)(1+๐›พ)(๐‘›+1)+๐‘š(๐›พ+๐›ฝ)๐‘ง๐‘›+1๐‘‹(๐‘›=๐‘š,๐‘š+1,๐‘š+2,...),๐‘›+1โ‰ฅ0,๐‘Œ๐‘›+1โ‰ฅ0,โˆž๎“๐‘›=๐‘š๎€บ๐‘‹๐‘›+1+๐‘Œ๐‘›+1๎€ป=1.(3.2) In particular, the extreme points of the class ๐‘‡(๐‘š,๐›ฝ,๐›พ) are {โ„Ž๐‘›+1} and {๐‘”๐‘›+1},respectively.

Proof. For functions ๐‘“(๐‘ง) of the form (3.1), we have ๐‘“(๐‘ง)=โˆž๎“๐‘›=๐‘š๎€บ๐‘‹๐‘›+1+๐‘Œ๐‘›+1๎€ป๐‘ง๐‘šโˆ’โˆž๎“๐‘›=๐‘š๐‘š(1โˆ’๐›ฝ)๐‘‹(1+๐›พ)(๐‘›+1)โˆ’๐‘š(๐›พ+๐›ฝ)๐‘›+1๐‘ง๐‘›+1+โˆž๎“๐‘›=๐‘š๐‘š(1โˆ’๐›ฝ)๐‘Œ(1+๐›พ)(๐‘›+1)+๐‘š(๐›พ+๐›ฝ)๐‘›+1๐‘ง๐‘›+1.(3.3) Then โˆž๎“๐‘›=๐‘š+1(1+๐›พ)(๐‘›+1)โˆ’๐‘š(๐›พ+๐›ฝ)๎‚ต๐‘š(1โˆ’๐›ฝ)๐‘š(1โˆ’๐›ฝ)๎‚ถ๐‘‹(1+๐›พ)(๐‘›+1)โˆ’๐‘š(๐›พ+๐›ฝ)๐‘›+1+โˆž๎“๐‘›=๐‘š(1+๐›พ)(๐‘›+1)+๐‘š(๐›พ+๐›ฝ)๎‚ต๐‘š(1โˆ’๐›ฝ)๐‘š(1โˆ’๐›ฝ)๎‚ถ๐‘Œ(1+๐›พ)(๐‘›+1)+๐‘š(๐›พ+๐›ฝ)๐‘›+1=โˆž๎“๐‘›=๐‘š+1๐‘‹๐‘›+1+โˆž๎“๐‘›=๐‘š๐‘Œ๐‘›+1=1โˆ’๐‘‹๐‘šโ‰ค1,(3.4) and so ๐‘“(๐‘ง)โˆˆclco๐‘‡(๐‘š,๐›ฝ,๐›พ).Conversely, suppose that ๐‘“(๐‘ง)โˆˆclco๐‘‡(๐‘š,๐›ฝ,๐›พ). Set ๐‘‹๐‘›+1=(1+๐›พ)(๐‘›+1)โˆ’๐‘š(๐›พ+๐›ฝ)๐‘Ž๐‘š(1โˆ’๐›ฝ)๐‘›+1(๐‘Œ๐‘›=๐‘š+1,...),๐‘›+1=(1+๐›พ)(๐‘›+1)+๐‘š(๐›พ+๐›ฝ)๐‘๐‘š(1โˆ’๐›ฝ)๐‘›+1(๐‘›=๐‘š,๐‘š+1,...),(3.5) then note that by Theorem 2.2,0โ‰ค๐‘‹๐‘›+1โ‰ค1(๐‘›=๐‘š+1,...) and 0โ‰ค๐‘Œ๐‘›+1โ‰ค1(๐‘›=๐‘š,๐‘š+1,...).
Consequently, we obtain ๐‘“(๐‘ง)=โˆž๎“๐‘›=๐‘š๎€บ๐‘‹๐‘›+1โ„Ž๐‘›+1(๐‘ง)+๐‘Œ๐‘›+1๐‘”๐‘›+1(๎€ป.๐‘ง)(3.6) Using Theorem 2.2 it is easily seen that the class ๐‘‡(๐‘š,๐›ฝ,๐›พ)is convex and closed, and so clco๐‘‡(๐‘š,๐›ฝ,๐›พ)=๐‘‡(๐‘š,๐›ฝ,๐›พ).

4. Convolution Result

For harmonic functions of the form ๐‘“(๐‘ง)=๐‘ง๐‘šโˆ’โˆž๎“๐‘›=๐‘š+1๐‘Ž๐‘›+1๐‘ง๐‘›+1+โˆž๎“๐‘›=๐‘š๐‘๐‘›+1๐‘ง๐‘›+1,(4.1)๐บ(๐‘ง)=๐‘ง๐‘šโˆ’โˆž๎“๐‘›=๐‘š+1๐ด๐‘›+1๐‘ง๐‘›+1+โˆž๎“๐‘›=๐‘š๐ต๐‘›+1๐‘ง๐‘›+1,(4.2) we define the convolution of two harmonic functions ๐‘“ and ๐บ as (๐‘“โˆ—๐บ)(๐‘ง)=๐‘“(๐‘ง)โˆ—๐บ(๐‘ง)=๐‘ง๐‘šโˆ’โˆž๎“๐‘›=๐‘š+1๐‘Ž๐‘›+1๐ด๐‘›+1๐‘ง๐‘›+1+โˆž๎“๐‘›=๐‘š๐‘๐‘›+1๐ต๐‘›+1๐‘ง๐‘›+1.(4.3) Using this definition, we show that the class ๐‘‡(๐‘š,๐›ฝ,๐›พ) is closed under convolution.

Theorem 4.1. For 0โ‰ค๐›ฝ<1, let ๐‘“(๐‘ง)โˆˆ๐‘‡(๐‘š,๐›ฝ,๐›พ) and ๐บ(๐‘ง)โˆˆ๐‘‡(๐‘š,๐›ฝ,๐›พ). Then ๐‘“(๐‘ง)โˆ—๐บ(๐‘ง)โˆˆ๐‘‡(๐‘š,๐›ฝ,๐›พ).

Proof. Let the functions ๐‘“(๐‘ง) defined by (4.1) be in the class๐‘‡(๐‘š,๐›ฝ,๐›พ), and let the functions ๐บ(๐‘ง) defined by (4.2) be in the class ๐‘‡(๐‘š,๐›ฝ,๐›พ). Obviously, the coefficients of ๐‘“ and ๐บ must satisfy a condition similar to the inequality (2.7). So for the coefficients of ๐‘“โˆ—๐บwe can write โˆž๎“๐‘›=๐‘šโˆ’1(1+๐›พ)(๐‘›+1)โˆ’๐‘š(๐›พ+๐›ฝ)๐‘Ž๐‘š(1โˆ’๐›ฝ)๐‘›+1๐ด๐‘›+1+(1+๐›พ)(๐‘›+1)+๐‘š(๐›พ+๐›ฝ)๐‘๐‘š(1โˆ’๐›ฝ)๐‘›+1๐ต๐‘›+1โ‰คโˆž๎“๐‘›=๐‘šโˆ’1๎‚ธ(1+๐›พ)(๐‘›+1)โˆ’๐‘š(๐›พ+๐›ฝ)๐‘š๐‘Ž(1โˆ’๐›ฝ)๐‘›+1+(1+๐›พ)(๐‘›+1)+๐‘š(๐›พ+๐›ฝ)๐‘š๐‘(1โˆ’๐›ฝ)๐‘›+1๎‚น,(4.4) where the right hand side of this inequality is bounded by 2 because ๐‘“โˆˆ๐‘‡(๐‘š,๐›ฝ,๐›พ). Then, ๐‘“(๐‘ง)โˆ—๐บ(๐‘ง)โˆˆ๐‘‡(๐‘š,๐›ฝ,๐›พ).

Finally, we show that ๐‘‡(๐‘š,๐›ฝ,๐›พ) is closed under convex combinations of its members.

Theorem 4.2. The class ๐‘‡(๐‘š,๐›ฝ,๐›พ)is closed under convex combination.

Proof. For ๐‘–=1,2,3,.... let ๐‘“๐‘–โˆˆ๐‘‡(๐‘š,๐›ฝ,๐›พ),where the functions ๐‘“๐‘– are given by ๐‘“๐‘–(๐‘ง)=๐‘ง๐‘šโˆ’โˆž๎“๐‘›=๐‘š+1๐‘Ž๐‘›+1,๐‘–๐‘ง๐‘›+1+โˆž๎“๐‘›=๐‘š๐‘๐‘›+1,๐‘–๐‘ง๐‘›+1๎€ท๐‘Ž๐‘›+1,๐‘–;๐‘๐‘›+1,๐‘–๎€ธ.โ‰ฅ0;๐‘šโ‰ฅ1(4.5) For โˆ‘โˆž๐‘–=1๐‘ก๐‘–=1;0โ‰ค๐‘ก๐‘–โ‰ค1,the convex combination of ๐‘“๐‘– may be written as โˆž๎“๐‘–=1๐‘ก๐‘–๐‘“๐‘–(๐‘ง)=๐‘ง๐‘šโˆ’โˆž๎“๐‘›=๐‘š+1๎ƒฉโˆž๎“๐‘–=1๐‘ก๐‘–๐‘Ž๐‘›+1,๐‘–๎ƒช๐‘ง๐‘›+1+โˆž๎“๐‘›=๐‘š๎ƒฉโˆž๎“๐‘–=1๐‘ก๐‘–๐‘๐‘›+1,๐‘–๎ƒช๐‘ง๐‘›+1(4.6) Then by (2.7), we have โˆž๎“๐‘›=๐‘šโˆ’1๎ƒฌ(1+๐›พ)(๐‘›+1)โˆ’๐‘š(๐›พ+๐›ฝ)๐‘š(1โˆ’๐›ฝ)โˆž๎“๐‘–=1๐‘ก๐‘–๐‘Ž๐‘›+1,๐‘–+(1+๐›พ)(๐‘›+1)+๐‘š(๐›พ+๐›ฝ)๐‘š(1โˆ’๐›ฝ)โˆž๎“๐‘–=1๐‘ก๐‘–๐‘๐‘›+1,๐‘–๎ƒญ=โˆž๎“๐‘–=1๐‘ก๐‘–๎ƒฏโˆž๎“๐‘›=๐‘šโˆ’1๎‚ธ(1+๐›พ)(๐‘›+1)โˆ’๐‘š(๐›พ+๐›ฝ)๐‘Ž๐‘š(1โˆ’๐›ฝ)๐‘›+1,๐‘–+(1+๐›พ)(๐‘›+1)+๐‘š(๐›พ+๐›ฝ)๐‘๐‘š(1โˆ’๐›ฝ)๐‘›+1,๐‘–๎‚น๎ƒฐโ‰ค2โˆž๎“๐‘–=1๐‘ก๐‘–=2.(4.7) This is the condition required by (2.7), and so โˆ‘โˆž๐‘–=1๐‘ก๐‘–๐‘“๐‘–(๐‘ง)โˆˆ๐‘‡(๐‘š,๐›ฝ,๐›พ).This completes the proof of Theorem 4.2.

Remark 4.3. Our results for ๐‘š=1 correct the results obtained by Kharinar and More [6].

Acknowledgment

The author thanks the referees for their valuable suggestions which led to the improvement of this study.