Abstract

A new class of multifunctions, called upper (lower) ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous multifunctions, has been defined and studied. Some characterizations and several properties concerning upper (lower) ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous multifunctions are obtained. The relationships between upper (lower) ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous multifunctions and some known concepts are also discussed.

1. Introduction

General topology has shown its fruitfulness in both the pure and applied directions. In reality it is used in data mining, computational topology for geometric design and molecular design, computer-aided design, computer-aided geometric design, digital topology, information system, and noncommutative geometry and its application to particle physics. One can observe the influence made in these realms of applied research by general topological spaces, properties, and structures. Continuity is a basic concept for the study of general topological spaces. This concept has been extended to the setting of multifunctions and has been generalized by weaker forms of open sets such as ๐›ผ -open sets [1], semiopen sets [2], preopen sets [3], ๐›ฝ -open sets [4], and semi-preopen sets [5]. Multifunctions and of course continuous multifunctions stand among the most important and most researched points in the whole of the mathematical science. Many different forms of continuous multifunctions have been introduced over the years. Some of them are semicontinuity [6], ๐›ผ -continuity [7], precontinuity [8], quasicontinuity [9], ๐›พ -continuity [10], and ๐›ฟ -precontinuity [11]. Most of these weaker forms of continuity, in ordinary topology such as ๐›ผ -continuity and ๐›ฝ -continuity, have been extended to multifunctions [12โ€“15]. Csรกszรกr [16] introduced the notions of generalized topological spaces and generalized neighborhood systems. The classes of topological spaces and neighborhood systems are contained in these classes, respectively. Specifically, he introduced the notions of continuous functions on generalized topological spaces and investigated the characterizations of generalized continuous functions. Kanibir and Reilly [17] extended these concepts to multifunctions. The purpose of the present paper is to define upper (lower) ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous multifunctions and to obtain several characterizations of upper (lower) ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous multifunctions and several properties of such multifunctions. Moreover, the relationships between upper (lower) ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous multifunctions and some known concepts are also discussed.

2. Preliminaries

Let ๐‘‹ be a nonempty set, and denote ๐’ซ ( ๐‘‹ ) the power set of ๐‘‹ . We call a class ๐œ‡ โŠ† ๐’ซ ( ๐‘‹ ) a generalized topology (briefly, GT) on ๐‘‹ if โˆ… โˆˆ ๐œ‡ , and an arbitrary union of elements of ๐œ‡ belongs to ๐œ‡ [16]. A set ๐‘‹ with a GT ๐œ‡ on it is said to be a generalized topological space (briefly, GTS) and is denoted by ( ๐‘‹ , ๐œ‡ ) . For a GTS ( ๐‘‹ , ๐œ‡ ) , the elements of ๐œ‡ are called ๐œ‡ -open sets and the complements of ๐œ‡ -open sets are called ๐œ‡ -closed sets. For ๐’œ โŠ† ๐‘‹ , we denote by ๐‘ ๐œ‡ ( ๐’œ ) the intersection of all ๐œ‡ -closed sets containing ๐’œ and by ๐‘– ๐œ‡ ( ๐’œ ) the union of all ๐œ‡ -open sets contained in ๐’œ . Then, we have ๐‘– ๐œ‡ ( ๐‘– ๐œ‡ ( ๐’œ ) ) = ๐‘– ๐œ‡ ( ๐’œ ) , ๐‘ ๐œ‡ ( ๐‘ ๐œ‡ ( ๐’œ ) ) = ๐‘ ๐œ‡ ( ๐’œ ) , and ๐‘– ๐œ‡ ( ๐’œ ) = ๐‘‹ โˆ’ ๐‘ ๐œ‡ ( ๐‘‹ โˆ’ ๐’œ ) . According to [18], for ๐’œ โŠ† ๐‘‹ and ๐‘ฅ โˆˆ ๐‘‹ , we have ๐‘ฅ โˆˆ ๐‘ ๐œ‡ ( ๐’œ ) if and only if ๐‘ฅ โˆˆ ๐‘€ โˆˆ ๐œ‡ implies ๐‘€ โˆฉ ๐’œ โ‰  โˆ… . Let โ„ฌ โŠ† ๐’ซ ( ๐‘‹ ) satisfy โˆ… โˆˆ โ„ฌ . Then all unions of some elements of โ„ฌ constitute a GT ๐œ‡ ( โ„ฌ ) , and โ„ฌ is said to be a base for ๐œ‡ ( โ„ฌ ) [19]. Let ๐œ‡ be a GT on a set ๐‘‹ โ‰  โˆ… . Observe that ๐‘‹ โˆˆ ๐œ‡ must not hold; if all the same ๐‘‹ โˆˆ ๐œ‡ , then we say that the GT ๐œ‡ is strong [20]. In general, let โ„ณ ๐œ‡ denote the union of all elements of ๐œ‡ ; of course, โ„ณ ๐œ‡ โˆˆ ๐œ‡ and โ„ณ ๐œ‡ = ๐‘‹ if and only if ๐œ‡ is a strong GT. Let us now consider those GTโ€™s ๐œ‡ that satisfy the folllowing condition: if ๐‘€ , ๐‘€ ๎…ž โˆˆ ๐œ‡ , then ๐‘€ โˆฉ ๐‘€ ๎…ž โˆˆ ๐œ‡ . We will call such a GT quasitopology (briefly QT) [21]; the QTs clearly are very near to the topologies.

A subset โ„› of a generalized topological space ( ๐‘‹ , ๐œ‡ ) is said to be ๐œ‡ ๐‘Ÿ -open [18] (resp. ๐œ‡ ๐‘Ÿ -closed) if โ„› = ๐‘– ๐œ‡ ( ๐‘ ๐œ‡ ( โ„› ) ) (resp. โ„› = ๐‘ ๐œ‡ ( ๐‘– ๐œ‡ ( โ„› ) ) ). A subset ๐’œ of a generalized topological space ( ๐‘‹ , ๐œ‡ ) is said to be ๐œ‡ -semiopen [22] (resp. ๐œ‡ -preopen, ๐œ‡ -ฮฑ-open,โ€‰โ€‰and ๐œ‡ -ฮฒ-open) if ๐’œ โŠ† ๐‘ ๐œ‡ ( ๐‘– ๐œ‡ ( ๐’œ ) ) (resp. ๐’œ โŠ† ๐‘– ๐œ‡ ( ๐‘ ๐œ‡ ( ๐’œ ) ) , ๐’œ โŠ† ๐‘– ๐œ‡ ( ๐‘ ๐œ‡ ( ๐‘– ๐œ‡ ( ๐’œ ) ) ) , ๐’œ โŠ† ๐‘ ๐œ‡ ( ๐‘– ๐œ‡ ( ๐‘ ๐œ‡ ( ๐’œ ) ) ) ). The family of all ๐œ‡ -semiopen (resp. ๐œ‡ -preopen, ๐œ‡ - ๐›ผ -open, ๐œ‡ - ๐›ฝ -open) sets of ๐‘‹ containing a point ๐‘ฅ โˆˆ ๐‘‹ is denoted by ๐œŽ ( ๐œ‡ , ๐‘ฅ ) (resp. ๐œ‹ ( ๐œ‡ , ๐‘ฅ ) , ๐›ผ ( ๐œ‡ , ๐‘ฅ ) , and ๐›ฝ ( ๐œ‡ , ๐‘ฅ ) ). The family of all ๐œ‡ -semiopen (resp. ๐œ‡ -preopen, ๐œ‡ - ๐›ผ -open, ๐œ‡ - ๐›ฝ -open) sets of ๐‘‹ is denoted by ๐œŽ ( ๐œ‡ ) (resp. ๐œ‹ ( ๐œ‡ ) , ๐›ผ ( ๐œ‡ ) , and ๐›ฝ ( ๐œ‡ ) ). It is shown in [22, Lemmaโ€‰โ€‰2.1] that ๐›ผ ( ๐œ‡ ) = ๐œŽ ( ๐œ‡ ) โˆฉ ๐œ‹ ( ๐œ‡ ) and it is obvious that ๐œŽ ( ๐œ‡ ) โˆช ๐œ‹ ( ๐œ‡ ) โŠ† ๐›ฝ ( ๐œ‡ ) . The complement of a ๐œ‡ -semiopen (resp. ๐œ‡ -preopen, ๐œ‡ - ๐›ผ -open, and ๐œ‡ - ๐›ฝ -open) set is said to be ๐œ‡ -semiclosed (resp. ๐œ‡ -preclosed, ๐œ‡ -ฮฑ-closed, and ๐œ‡ -ฮฒ-closed).

The intersection of all ๐œ‡ -semiclosed (resp. ๐œ‡ -preclosed, ๐œ‡ - ๐›ผ -closed, andโ€‰โ€‰ ๐œ‡ - ๐›ฝ -closed) sets of ๐‘‹ containing ๐’œ is denoted by ๐‘ ๐œŽ ( ๐’œ ) . ๐‘ ๐œ‹ ( ๐’œ ) , ๐‘ ๐›ผ ( ๐’œ ) , and ๐‘ ๐›ฝ ( ๐’œ ) are defined similarly. The union of all ๐œ‡ - ๐›ฝ -open sets of ๐‘‹ contained in ๐’œ is denoted by ๐‘– ๐›ฝ ( ๐’œ ) .

Now let ๐พ โ‰  โˆ… be an index set, ๐‘‹ ๐‘˜ โ‰  โˆ… for ๐‘˜ โˆˆ ๐พ , and โˆ ๐‘‹ = ๐‘˜ โˆˆ ๐พ ๐‘‹ ๐‘˜ the Cartesian product of the sets ๐‘‹ ๐‘˜ . We denote by ๐‘ ๐‘˜ the projection ๐‘ ๐‘˜ โˆถ ๐‘‹ โ†’ ๐‘‹ ๐‘˜ . Suppose that, for ๐‘˜ โˆˆ ๐พ , ๐‘ข ๐‘˜ is a given GT on ๐‘‹ ๐‘˜ . Let us consider all sets of the form โˆ ๐‘˜ โˆˆ ๐พ ๐‘‹ ๐‘˜ , where ๐‘€ ๐‘˜ โˆˆ ๐œ‡ ๐‘˜ and, with the exception of a finite number of indices ๐‘˜ , ๐‘€ ๐‘˜ = ๐‘ ๐‘˜ = ๐‘€ ๐œ‡ ๐‘˜ . We denote by โ„ฌ the collection of all these sets. Clearly โˆ… โˆˆ โ„ฌ so that we can define a GT ๐œ‡ = ๐œ‡ ( โ„ฌ ) having โ„ฌ for base. We call ๐œ‡ the product [23] of the GTโ€™s ๐œ‡ ๐‘˜ and denote it by ๐ ๐‘˜ โˆˆ ๐พ ๐œ‡ ๐‘˜ .

Let us write ๐‘– = ๐‘– ๐œ‡ , ๐‘ = ๐‘ ๐œ‡ , ๐‘– ๐‘˜ = ๐‘– ๐œ‡ ๐‘˜ , and ๐‘ ๐‘˜ = ๐‘ ๐œ‡ ๐‘˜ . Consider in the following ๐ด ๐‘˜ โŠ† ๐‘‹ ๐‘˜ , โˆ ๐ด = ๐‘˜ โˆˆ ๐พ ๐ด ๐‘˜ , โˆ ๐‘ฅ โˆˆ ๐‘˜ โˆˆ ๐พ ๐‘‹ ๐‘˜ , and ๐‘ฅ ๐‘˜ = ๐‘ ๐‘˜ ( ๐‘ฅ ) .

Proposition 2.1 (see [23]). One has โˆ ๐‘ ๐ด = ๐‘˜ โˆˆ ๐พ ๐‘ ๐‘˜ ๐ด ๐‘˜ .

Proposition 2.2 (see [24]). Let โˆ ๐ด = ๐‘˜ โˆˆ ๐พ ๐ด ๐‘˜ โŠ† โˆ ๐‘˜ โˆˆ ๐พ ๐‘‹ ๐‘˜ , and let ๐พ 0 be a finite subset of ๐พ . If ๐ด ๐‘˜ โˆˆ { ๐‘€ ๐‘˜ , ๐‘‹ ๐‘˜ } for each ๐‘˜ โˆˆ ๐พ โˆ’ ๐พ 0 , then โˆ ๐‘– ๐ด = ๐‘˜ โˆˆ ๐พ ๐‘– ๐‘˜ ๐ด ๐‘˜ .

Proposition 2.3 (see [23]). The projection ๐‘ ๐‘˜ is ( ๐œ‡ , ๐œ‡ ๐‘˜ ) -open.

Proposition 2.4 (see [23]). If every ๐œ‡ ๐‘˜ is strong, then ๐œ‡ is strong and ๐‘ ๐‘˜ is ( ๐œ‡ , ๐œ‡ ๐‘˜ ) -continuous for ๐‘˜ โˆˆ ๐พ .

Throughout this paper, the spaces ( ๐‘‹ , ๐œ‡ ๐‘‹ ) and ( ๐‘Œ , ๐œ‡ ๐‘Œ ) (or simply ๐‘‹ and ๐‘Œ ) always mean generalized topological spaces. By a multifunction ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ , we mean a point-to-set correspondence from ๐‘‹ into ๐‘Œ , and we always assume that ๐น ( ๐‘ฅ ) โ‰  โˆ… for all ๐‘ฅ โˆˆ ๐‘‹ . For a multifunction ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ , we will denote the upper and lower inverse of a set ๐บ of ๐‘Œ by ๐น + ( ๐บ ) and ๐น โˆ’ ( ๐บ ) , respectively, that is ๐น + ( ๐บ ) = { ๐‘ฅ โˆˆ ๐‘‹ โˆถ ๐น ( ๐‘ฅ ) โŠ† ๐บ } and ๐น โˆ’ ( ๐บ ) = { ๐‘ฅ โˆˆ ๐‘‹ โˆถ ๐น ( ๐‘ฅ ) โˆฉ ๐บ โ‰  โˆ… } . In particular, ๐น โˆ’ ( ๐‘ฆ ) = { ๐‘ฅ โˆˆ ๐‘‹ โˆถ ๐‘ฆ โˆˆ ๐น ( ๐‘ฅ ) } for each point ๐‘ฆ โˆˆ ๐‘Œ . For each ๐ด โŠ† ๐‘‹ , ๐น ( ๐ด ) = โˆช ๐‘ฅ โˆˆ ๐ด ๐น ( ๐‘ฅ ) . Then, ๐น is said to be a surjection if ๐น ( ๐‘‹ ) = ๐‘Œ , or equivalently, if for each ๐‘ฆ โˆˆ ๐‘Œ there exists an ๐‘ฅ โˆˆ ๐‘‹ such that ๐‘ฆ โˆˆ ๐น ( ๐‘ฅ ) .

3. Upper and Lower ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -Continuous Multifunctions

Definition 3.1. Let ( ๐‘‹ , ๐œ‡ ๐‘‹ ) and ( ๐‘Œ , ๐œ‡ ๐‘Œ ) be generalized topological spaces. A multifunction ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ is said to be(1)upper ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous at a point ๐‘ฅ โˆˆ ๐‘‹ if, for each ๐œ‡ ๐‘Œ -open set ๐‘‰ of ๐‘Œ containing ๐น ( ๐‘ฅ ) , there exists ๐‘ˆ โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐‘ฅ ) such that ๐น ( ๐‘ˆ ) โŠ† ๐‘‰ ,(2)lower ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous at a point ๐‘ฅ โˆˆ ๐‘‹ if, for each ๐œ‡ ๐‘Œ -open set ๐‘‰ of ๐‘Œ such that ๐น ( ๐‘ฅ ) โˆฉ ๐‘‰ โ‰  โˆ… , there exists ๐‘ˆ โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐‘ฅ ) such that ๐น ( ๐‘ง ) โˆฉ ๐‘‰ โ‰  โˆ… for every ๐‘ง โˆˆ ๐‘ˆ ,(3)upper (resp. lower) ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous if ๐น has this property at each point of ๐‘‹ .

Lemma 3.2. Let ๐ด be a subset of a generalized topological space ( ๐‘‹ , ๐œ‡ ๐‘‹ ) . Then,(1) ๐‘ฅ โˆˆ ๐‘ ๐›ฝ ๐‘‹ ( ๐ด ) if and only if ๐ด โˆฉ ๐‘ˆ โ‰  โˆ… for each ๐‘ˆ โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐‘ฅ ) ,(2) ๐‘ ๐›ฝ ๐‘‹ ( ๐‘‹ โˆ’ ๐ด ) = ๐‘‹ โˆ’ ๐‘– ๐›ฝ ๐‘‹ ( ๐ด ) ,(3) ๐ด is ๐œ‡ ๐‘‹ - ๐›ฝ -closed in ๐‘‹ if and only if ๐ด = ๐‘ ๐›ฝ ๐‘‹ ( ๐ด ) ,(4) ๐‘ ๐›ฝ ๐‘‹ ( ๐ด ) is ๐œ‡ ๐‘‹ - ๐›ฝ -closed in ๐‘‹ .

Theorem 3.3. For a multifunction ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ , the following properties are equivalent:(1) ๐น is upper ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous,(2) ๐น + ( ๐‘‰ ) = ๐‘– ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘‰ ) ) for every ๐œ‡ ๐‘Œ - ๐›ฝ -open set ๐‘‰ of ๐‘Œ ,(3) ๐น โˆ’ ( ๐‘€ ) = ๐‘ ๐›ฝ ๐‘‹ ( ๐น โˆ’ ( ๐‘€ ) ) for every ๐œ‡ ๐‘Œ - ๐›ฝ -closed set ๐‘€ of ๐‘Œ ,(4) ๐‘ ๐›ฝ ๐‘‹ ( ๐น โˆ’ ( ๐ด ) ) โŠ† ๐น โˆ’ ( ๐‘ ๐›ฝ ๐‘Œ ( ๐ด ) ) for every subset ๐ด of ๐‘Œ ,(5) ๐น + ( ๐‘– ๐›ฝ ๐‘Œ ( ๐ด ) ) โŠ† ๐‘– ๐›ฝ ๐‘‹ ( ๐น + ( ๐ด ) ) for every subset ๐ด of ๐‘Œ .

Proof. ( 1 ) โ‡’ ( 2 ) Let ๐‘‰ be any ๐œ‡ ๐‘Œ - ๐›ฝ -open set of ๐‘Œ and ๐‘ฅ โˆˆ ๐น + ( ๐‘‰ ) . Then ๐น ( ๐‘ฅ ) โŠ† ๐‘‰ . There exists ๐‘ˆ โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ ) containing ๐‘ฅ such that ๐น ( ๐‘ˆ ) โŠ† ๐‘‰ . Thus ๐‘ฅ โˆˆ ๐‘ˆ โŠ† ๐น + ( ๐‘‰ ) . This implies that ๐‘ฅ โˆˆ ๐‘– ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘‰ ) ) . This shows that ๐น + ( ๐‘‰ ) โŠ† ๐‘– ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘‰ ) ) . We have ๐‘– ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘‰ ) ) โŠ† ๐น + ( ๐‘‰ ) . Therefore, ๐น + ( ๐‘‰ ) = ๐‘– ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘‰ ) ) .
( 2 ) โ‡’ ( 3 ) Let ๐‘€ be any ๐œ‡ ๐‘Œ - ๐›ฝ -closed set of ๐‘Œ . Then, ๐‘Œ โˆ’ ๐‘€ is ๐œ‡ ๐‘Œ - ๐›ฝ -open set, and we have ๐‘‹ โˆ’ ๐น โˆ’ ( ๐‘€ ) = ๐น + ( ๐‘Œ โˆ’ ๐‘€ ) = ๐‘– ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘Œ โˆ’ ๐‘€ ) ) = ๐‘– ๐›ฝ ๐‘‹ ( ๐‘‹ โˆ’ ๐น โˆ’ ( ๐‘€ ) ) = ๐‘‹ โˆ’ ๐‘ ๐›ฝ ๐‘‹ ( ๐น โˆ’ ( ๐‘€ ) ) . Therefore, we obtain ๐‘ ๐›ฝ ๐‘‹ ( ๐น โˆ’ ( ๐‘€ ) ) = ๐น โˆ’ ( ๐‘€ ) .
( 3 ) โ‡’ ( 4 ) Let ๐ด be any subset of ๐‘Œ . Since ๐‘ ๐›ฝ ๐‘Œ ( ๐ด ) is ๐œ‡ ๐‘Œ - ๐›ฝ -closed, we obtain ๐น โˆ’ ( ๐ด ) โŠ† ๐น โˆ’ ( ๐‘ ๐›ฝ ๐‘Œ ( ๐ด ) ) = ๐‘ ๐›ฝ ๐‘‹ ( ๐น โˆ’ ( ๐‘ ๐›ฝ ๐‘Œ ( ๐ด ) ) ) and ๐‘ ๐›ฝ ๐‘‹ ( ๐น โˆ’ ( ๐ด ) ) โŠ† ๐น โˆ’ ( ๐‘ ๐›ฝ ๐‘Œ ( ๐ด ) ) .
( 4 ) โ‡’ ( 5 ) Let ๐ด be any subset of ๐‘Œ . We have ๐‘‹ โˆ’ ๐‘– ๐›ฝ ๐‘‹ ( ๐น + ( ๐ด ) ) = ๐‘ ๐›ฝ ๐‘‹ ( ๐‘‹ โˆ’ ๐น + ( ๐ด ) ) = ๐‘ ๐›ฝ ๐‘‹ ( ๐น โˆ’ ( ๐‘Œ โˆ’ ๐ด ) ) โŠ† ๐น โˆ’ ( ๐‘ ๐›ฝ ๐‘Œ ( ๐‘Œ โˆ’ ๐ด ) ) = ๐น โˆ’ ( ๐‘Œ โˆ’ ๐‘– ๐›ฝ ๐‘Œ ( ๐ด ) ) = ๐‘‹ โˆ’ ๐น + ( ๐‘– ๐›ฝ ๐‘Œ ( ๐ด ) ) . Therefore, we obtain ๐น + ( ๐‘– ๐›ฝ ๐‘Œ ( ๐ด ) ) โŠ† ๐‘– ๐›ฝ ๐‘‹ ( ๐น + ( ๐ด ) ) .
( 5 ) โ‡’ ( 1 ) Let ๐‘ฅ โˆˆ ๐‘‹ and ๐‘‰ be any ๐œ‡ ๐‘Œ - ๐›ฝ -open set of ๐‘Œ containing ๐น ( ๐‘ฅ ) . Then ๐‘ฅ โˆˆ ๐น + ( ๐‘‰ ) = ๐น + ( ๐‘– ๐›ฝ ๐‘Œ ( ๐‘‰ ) ) โŠ† ๐‘– ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘‰ ) ) . There exists a ๐œ‡ ๐‘‹ - ๐›ฝ -open set ๐‘ˆ of ๐‘‹ containing ๐‘ฅ such that ๐‘ˆ โŠ† ๐น + ( ๐‘‰ ) ; hence ๐น ( ๐‘ˆ ) โŠ† ๐‘‰ . This implies that ๐น is upper ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous.

Theorem 3.4. For a multifunction ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ , the following properties are equivalent:(1) ๐น is lower ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous,(2) ๐น โˆ’ ( ๐‘‰ ) = ๐‘– ๐›ฝ ๐‘‹ ( ๐น โˆ’ ( ๐‘‰ ) ) for every ๐œ‡ ๐‘Œ - ๐›ฝ -open set ๐‘‰ of ๐‘Œ ,(3) ๐น + ( ๐‘€ ) = ๐‘ ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘€ ) ) for every ๐œ‡ ๐‘Œ - ๐›ฝ -closed set ๐‘€ of ๐‘Œ ,(4) ๐‘ ๐›ฝ ๐‘‹ ( ๐น + ( ๐ด ) ) โŠ† ๐น + ( ๐‘ ๐›ฝ ๐‘Œ ( ๐ด ) ) for every subset ๐ด of ๐‘Œ ,(5) ๐น ( ๐‘ ๐›ฝ ๐‘‹ ( ๐ด ) ) โŠ† ๐‘ ๐›ฝ ๐‘Œ ( ๐น ( ๐ด ) ) for every subset ๐ด of ๐‘‹ ,(6) ๐น โˆ’ ( ๐‘– ๐›ฝ ๐‘Œ ( ๐ด ) ) โŠ† ๐‘– ๐›ฝ ๐‘‹ ( ๐น โˆ’ ( ๐ด ) ) for every subset ๐ด of ๐‘Œ .

Proof. We prove only the implications ( 4 ) โ‡’ ( 5 ) and ( 5 ) โ‡’ ( 6 ) with the proofs of the other being similar to those of Theorem 3.3.
( 4 ) โ‡’ ( 5 ) Let ๐ด be any subset of ๐‘‹ . By (4), we have ๐‘ ๐›ฝ ๐‘‹ ( ๐ด ) โŠ† ๐‘ ๐›ฝ ๐‘‹ ( ๐น + ( ๐น ( ๐ด ) ) ) โŠ† ๐น + ( ๐‘ ๐›ฝ ๐‘Œ ( ๐น ( ๐ด ) ) ) and ๐น ( ๐‘ ๐›ฝ ๐‘‹ ( ๐ด ) ) โŠ† ๐‘ ๐›ฝ ๐‘Œ ( ๐น ( ๐ด ) ) .
( 5 ) โ‡’ ( 6 ) Let ๐ด be any subset of ๐‘Œ . By (5), we have ๐น ( ๐‘ ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘Œ โˆ’ ๐ด ) ) ) โŠ† ๐‘ ๐›ฝ ๐‘Œ ( ๐น ( ๐น + ( ๐‘Œ โˆ’ ๐ด ) ) ) โŠ† ๐‘ ๐›ฝ ๐‘Œ ( ๐‘Œ โˆ’ ๐ด ) = ๐‘Œ โˆ’ ๐‘– ๐›ฝ ๐‘Œ ( ๐ด ) and ๐น ( ๐‘ ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘Œ โˆ’ ๐ด ) ) ) = ๐น ( ๐‘ ๐›ฝ ๐‘‹ ( ๐‘‹ โˆ’ ๐น โˆ’ ( ๐ด ) ) ) = ๐น ( ๐‘‹ โˆ’ ๐‘– ๐›ฝ ๐‘‹ ( ๐น โˆ’ ( ๐ด ) ) ) . This implies that ๐น โˆ’ ( ๐‘– ๐›ฝ ๐‘Œ ( ๐ด ) ) โŠ† ๐‘– ๐›ฝ ๐‘‹ ( ๐น โˆ’ ( ๐ด ) ) .

Definition 3.5. A generalized topological space ( ๐‘‹ , ๐œ‡ ๐‘‹ ) is said to be ๐œ‡ ๐‘‹ - ๐›ฝ -compact if every cover of ๐‘‹ by ๐œ‡ ๐‘‹ - ๐›ฝ -open sets has a finite subcover.

A subset ๐‘€ of a generalized topological space ( ๐‘‹ , ๐œ‡ ๐‘‹ ) is said to be ๐œ‡ ๐‘‹ - ๐›ฝ -compact if every cover of ๐‘€ by ๐œ‡ ๐‘‹ - ๐›ฝ -open sets has a finite subcover.

Theorem 3.6. Let ( ๐‘‹ , ๐œ‡ ๐‘‹ ) be a generalized topological space and ( ๐‘Œ , ๐œ‡ ๐‘Œ ) a quasitopological space. If ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ is upper ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous multifunction such that ๐น ( ๐‘ฅ ) is ๐œ‡ ๐‘Œ - ๐›ฝ -compact for each ๐‘ฅ โˆˆ ๐‘‹ and ๐‘€ is a ๐œ‡ ๐‘‹ - ๐›ฝ -compact set of ๐‘‹ , then ๐น ( ๐‘€ ) is ๐œ‡ ๐‘Œ - ๐›ฝ -compact.

Proof. Let { ๐‘‰ ๐›พ โˆถ ๐›พ โˆˆ ฮ“ } be any cover of ๐น ( ๐‘€ ) by ๐œ‡ ๐‘Œ - ๐›ฝ -open sets. For each ๐‘ฅ โˆˆ ๐‘€ , ๐น ( ๐‘ฅ ) is ๐œ‡ ๐‘Œ - ๐›ฝ -compact and there exists a finite subset ฮ“ ( ๐‘ฅ ) of ฮ“ such that ๐น ( ๐‘ฅ ) โŠ† โˆช { ๐‘‰ ๐›พ โˆถ ๐›พ โˆˆ ฮ“ ( ๐‘ฅ ) } . Now, set ๐‘‰ ( ๐‘ฅ ) = โˆช { ๐‘‰ ๐›พ โˆถ ๐›พ โˆˆ ฮ“ ( ๐‘ฅ ) } . Then we have ๐น ( ๐‘ฅ ) โŠ† ๐‘‰ ( ๐‘ฅ ) and ๐‘‰ ( ๐‘ฅ ) is ๐œ‡ ๐‘Œ - ๐›ฝ -open set of ๐‘Œ . Since ๐น is upper ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous, there exists a ๐œ‡ ๐‘‹ - ๐›ฝ -open set ๐‘ˆ ( ๐‘ฅ ) containing ๐‘ฅ such that ๐น ( ๐‘ˆ ( ๐‘ฅ ) ) โŠ† ๐‘‰ ( ๐‘ฅ ) . The family { ๐‘ˆ ( ๐‘ฅ ) โˆถ ๐‘ฅ โˆˆ ๐‘€ } is a cover of ๐‘€ by ๐œ‡ ๐‘‹ - ๐›ฝ -open sets. Since ๐‘€ is ๐œ‡ ๐‘‹ - ๐›ฝ -compact, there exists a finite number of points, say, ๐‘ฅ 1 , ๐‘ฅ 2 , โ€ฆ , ๐‘ฅ ๐‘› in ๐‘€ such that ๐‘€ โŠ† โˆช { ๐‘ˆ ( ๐‘ฅ ๐‘š ) โˆถ ๐‘ฅ ๐‘š โˆˆ ๐‘€ , 1 โ‰ค ๐‘š โ‰ค ๐‘› } . Therefore, we obtain ๐น ( ๐‘€ ) โŠ† โˆช { ๐น ( ๐‘ˆ ( ๐‘ฅ ๐‘š ) ) โˆถ ๐‘ฅ ๐‘š โˆˆ ๐‘€ , 1 โ‰ค ๐‘š โ‰ค ๐‘› } โŠ† โˆช { ๐‘‰ ๐›พ โˆถ ๐›พ โˆˆ ๐›พ ( ๐‘ฅ ๐‘š ) , ๐‘ฅ ๐‘š โˆˆ ๐‘€ , 1 โ‰ค ๐‘š โ‰ค ๐‘› } . This shows that ๐น ( ๐‘€ ) is ๐œ‡ ๐‘Œ - ๐›ฝ -compact.

Corollary 3.7. Let ( ๐‘‹ , ๐œ‡ ๐‘‹ ) be a generalized topological space and ( ๐‘Œ , ๐œ‡ ๐‘Œ ) a quasitopological space. If ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ is upper ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous surjective multifunction such that ๐น ( ๐‘ฅ ) is ๐œ‡ ๐‘Œ - ๐›ฝ -compact for each ๐‘ฅ โˆˆ ๐‘‹ and ( ๐‘‹ , ๐œ‡ ๐‘‹ ) is ๐œ‡ ๐‘‹ - ๐›ฝ -compact, then ( ๐‘Œ , ๐œ‡ ๐‘Œ ) is ๐œ‡ ๐‘Œ - ๐›ฝ -compact.

Definition 3.8. A subset ๐ด of a generalized topological space ( ๐‘‹ , ๐œ‡ ๐‘‹ ) is said to be ๐œ‡ ๐‘‹ - ๐›ฝ -clopen if ๐ด is ๐œ‡ ๐‘‹ - ๐›ฝ -closed and ๐œ‡ ๐‘‹ - ๐›ฝ -open.

Definition 3.9. A generalized topological space ( ๐‘‹ , ๐œ‡ ๐‘‹ ) is said to be ๐œ‡ ๐‘‹ - ๐›ฝ -connected if ๐‘‹ can not be written as the union of two nonempty disjoint ๐œ‡ ๐‘‹ - ๐›ฝ -open sets.

Theorem 3.10. Let ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ be upper ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous surjective multifunction. If ( ๐‘‹ , ๐œ‡ ๐‘‹ ) is ๐œ‡ ๐‘‹ - ๐›ฝ -connected and ๐น ( ๐‘ฅ ) is ๐œ‡ ๐‘Œ - ๐›ฝ -connected for each ๐‘ฅ โˆˆ ๐‘‹ , then ( ๐‘Œ , ๐œ‡ ๐‘Œ ) is ๐œ‡ ๐‘Œ - ๐›ฝ -connected.

Proof. Suppose that ( ๐‘Œ , ๐œ‡ ๐‘Œ ) is not ๐œ‡ ๐‘Œ - ๐›ฝ -connected. There exist nonempty ๐œ‡ ๐‘Œ - ๐›ฝ -open sets ๐‘ˆ and ๐‘‰ of ๐‘Œ such that ๐‘ˆ โˆช ๐‘‰ = ๐‘Œ and ๐‘ˆ โˆฉ ๐‘‰ = โˆ… . Since ๐น ( ๐‘ฅ ) is ๐œ‡ ๐‘Œ -connected for each ๐‘ฅ โˆˆ ๐‘‹ , we have either ๐น ( ๐‘ฅ ) โŠ† ๐‘ˆ or ๐น ( ๐‘ฅ ) โŠ† ๐‘‰ . If ๐‘ฅ โˆˆ ๐น + ( ๐‘ˆ โˆช ๐‘‰ ) , then ๐น ( ๐‘ฅ ) โŠ† ๐‘ˆ โˆฉ ๐‘‰ and hence ๐‘ฅ โˆˆ ๐น + ( ๐‘ˆ ) โˆช ๐น + ( ๐‘‰ ) . Moreover, since ๐น is surjective, there exist ๐‘ฅ and ๐‘ฆ in ๐‘‹ such that ๐น ( ๐‘ฅ ) โŠ† ๐‘ˆ and ๐น ( ๐‘ฆ ) โŠ† ๐‘‰ ; hence ๐‘ฅ โˆˆ ๐น + ( ๐‘ˆ ) and ๐‘ฆ โˆˆ ๐น + ( ๐‘‰ ) . Therefore, we obtain the following:(1) ๐น + ( ๐‘ˆ ) โˆช ๐น + ( ๐‘‰ ) = ๐น + ( ๐‘ˆ โˆช ๐‘‰ ) = ๐‘‹ ,(2) ๐น + ( ๐‘ˆ ) โˆฉ ๐น + ( ๐‘‰ ) = ๐น + ( ๐‘ˆ โˆฉ ๐‘‰ ) = โˆ… ,(3) F + ( ๐‘ˆ ) โ‰  โˆ… and ๐น + ( ๐‘‰ ) โ‰  โˆ… . By Theorem 3.3, ๐น + ( ๐‘ˆ ) and ๐น + ( ๐‘‰ ) are ๐œ‡ ๐‘‹ - ๐›ฝ -open. Consequently, ( ๐‘‹ , ๐œ‡ ๐‘‹ ) is not ๐œ‡ ๐‘‹ - ๐›ฝ -connected.

Theorem 3.11. Let ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ be lower ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous surjective multifunction. If ( ๐‘‹ , ๐œ‡ ๐‘‹ ) is ๐œ‡ ๐‘‹ - ๐›ฝ -connected and ๐น ( ๐‘ฅ ) is ๐œ‡ ๐‘Œ - ๐›ฝ -connected for each ๐‘ฅ โˆˆ ๐‘‹ , then ( ๐‘Œ , ๐œ‡ ๐‘Œ ) is ๐œ‡ ๐‘Œ - ๐›ฝ -connected.

Proof. The proof is similar to that of Theorem 3.10 and is thus omitted.

Let { ๐‘‹ ๐›ผ โˆถ ๐›ผ โˆˆ ฮฆ } and { ๐‘Œ ๐›ผ โˆถ ๐›ผ โˆˆ ฮฆ } be any two families of generalized topological spaces with the same index set ฮฆ . For each ๐›ผ โˆˆ ฮฆ , let ๐น ๐›ผ โˆถ ๐‘‹ ๐›ผ โ†’ ๐‘Œ ๐›ผ be a multifunction. The product space โˆ { ๐‘‹ ๐›ผ โˆถ ๐›ผ โˆˆ ฮฆ } is denoted by โˆ ๐‘‹ ๐›ผ and the product multifunction โˆ ๐น ๐›ผ โˆถ โˆ ๐‘‹ ๐›ผ โ†’ โˆ ๐‘Œ ๐›ผ , defined by โˆ ๐น ( ๐‘ฅ ) = { ๐น ๐›ผ ( ๐‘ฅ ๐›ผ ) โˆถ ๐›ผ โˆˆ ฮฆ } for each ๐‘ฅ = { ๐‘ฅ ๐›ผ โˆ ๐‘‹ } โˆˆ ๐›ผ , is simply denoted by โˆ ๐‘‹ ๐น โˆถ ๐›ผ โ†’ โˆ ๐‘Œ ๐›ผ .

Theorem 3.12. Let ๐น ๐›ผ โˆถ ๐‘‹ โ†’ ๐‘Œ ๐›ผ be a multifunction for each ๐›ผ โˆˆ ฮฆ and โˆ ๐‘Œ ๐น โˆถ ๐‘‹ โ†’ ๐›ผ a multifunction defined by โˆ ๐น ( ๐‘ฅ ) = { ๐น ๐›ผ ( ๐‘ฅ ) โˆถ ๐›ผ โˆˆ ฮฆ } for each ๐‘ฅ โˆˆ ๐‘‹ . If ๐น is upper ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ โˆ ๐‘Œ ๐›ผ ) -continuous, then ๐น ๐›ผ is upper ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ๐›ผ ) -continuous for each ๐›ผ โˆˆ ฮฆ .

Proof. Let ๐‘ฅ โˆˆ ๐‘‹ and ๐›ผ โˆˆ ฮฆ , and let ๐‘‰ ๐›ผ be any ๐œ‡ ๐‘Œ ๐›ผ -open set of ๐‘Œ ๐›ผ containing ๐น ๐›ผ ( ๐‘ฅ ) . Therefore, we obtain that ๐‘ ๐›ผ โˆ’ 1 ( ๐‘‰ ๐›ผ ) = ๐‘‰ ๐›ผ ร— โˆ { ๐‘Œ ๐›พ โˆถ ๐›พ โˆˆ ฮฆ and ๐›พ โ‰  ๐›ผ } is a ๐œ‡ โˆ ๐‘Œ ๐›ผ -open set of โˆ ๐‘Œ ๐›ผ containing ๐น ( ๐‘ฅ ) , where ๐‘ ๐›ผ is the natural projection of โˆ ๐‘Œ ๐›ผ onto ๐‘Œ ๐›ผ . Since ๐น is upper ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ โˆ ๐‘Œ ๐›ผ ) -continuous, there exists ๐‘ˆ โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐‘ฅ ) such that ๐น ( ๐‘ˆ ) โŠ† ๐‘ ๐›ผ โˆ’ 1 ( ๐‘‰ ๐›ผ ) . Therefore, we obtain ๐น ๐›ผ ( ๐‘ˆ ) โŠ† ๐‘ ๐›ผ ( ๐น ( ๐‘ˆ ) ) โŠ† ๐‘ ๐›ผ ( ๐‘ ๐›ผ โˆ’ 1 ( ๐‘‰ ๐›ผ ) ) = ๐‘‰ ๐›ผ . This shows that ๐น ๐›ผ โˆถ ๐‘‹ โ†’ ๐‘Œ ๐›ผ is upper ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ๐›ผ ) -continuous for each ๐›ผ โˆˆ ฮฆ .

Theorem 3.13. Let ๐น ๐›ผ โˆถ ๐‘‹ โ†’ ๐‘Œ ๐›ผ be a multifunction for each ๐›ผ โˆˆ ฮฆ and โˆ ๐‘Œ ๐น โˆถ ๐‘‹ โ†’ ๐›ผ a multifunction defined by โˆ ๐น ( ๐‘ฅ ) = { ๐น ๐›ผ ( ๐‘ฅ ) โˆถ ๐›ผ โˆˆ ฮฆ } for each ๐‘ฅ โˆˆ ๐‘‹ . If ๐น is upper ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ โˆ ๐‘Œ ๐›ผ ) -continuous, then ๐น ๐›ผ is upper ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ๐›ผ ) -continuous for each ๐›ผ โˆˆ ฮฆ .

Proof. The proof is similar to that of Theorem 3.12 and is thus omitted.

4. Upper and Lower Almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -Continuous Multifunctions

Definition 4.1. Let ( ๐‘‹ , ๐œ‡ ๐‘‹ ) and ( ๐‘Œ , ๐œ‡ ๐‘Œ ) be generalized topological spaces. A multifunction ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ is said to be(1)upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous at a point ๐‘ฅ โˆˆ ๐‘‹ if, for each ๐œ‡ ๐‘Œ -open set ๐‘‰ of ๐‘Œ containing ๐น ( ๐‘ฅ ) , there exists ๐‘ˆ โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐‘ฅ ) such that ๐น ( ๐‘ˆ ) โŠ† ๐‘– ๐œ‡ ๐‘Œ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) ,(2)lower almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous at a point ๐‘ฅ โˆˆ ๐‘‹ if, for each ๐œ‡ ๐‘Œ -open set ๐‘‰ of ๐‘Œ such that ๐น ( ๐‘ฅ ) โˆฉ ๐‘‰ โ‰  โˆ… , there exists ๐‘ˆ โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐‘ฅ ) such that ๐น ( ๐‘ง ) โˆฉ ๐‘– ๐œ‡ ๐‘Œ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) โ‰  โˆ… for every ๐‘ง โˆˆ ๐‘ˆ ,(3)upper almost (resp. lower almost) ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous if ๐น has this property at each point of ๐‘‹ .

Remark 4.2. For a multifunction ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ , the following implication holds: upper ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous โ‡’ upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous.
The following example shows that this implication is not reversible.

Example 4.3. Let ๐‘‹ = { 1 , 2 , 3 , 4 } and ๐‘Œ = { ๐‘Ž , ๐‘ , ๐‘ , ๐‘‘ } . Define a generalized topology ๐œ‡ ๐‘‹ = { โˆ… , { 1 } , { 1 , 2 } , { 2 , 3 } , { 1 , 2 , 3 } } on ๐‘‹ and a generalized topology ๐œ‡ ๐‘Œ = { โˆ… , { ๐‘Ž , ๐‘ } , { ๐‘ , ๐‘ } , { ๐‘Ž , ๐‘ , ๐‘ } , ๐‘Œ } on ๐‘Œ . A multifunction ๐น โˆถ ( ๐‘‹ , ๐œ‡ ๐‘‹ ) โ†’ ( ๐‘Œ , ๐œ‡ ๐‘Œ ) is defined as follows: ๐น ( 1 ) = { ๐‘ } , ๐น ( 2 ) = ๐น ( 4 ) = { ๐‘‘ } , and ๐น ( 3 ) = { ๐‘ } . Then ๐น is upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous but it is not upper ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous.

A subset ๐‘ ๐‘ฅ of a generalized topological space ( ๐‘‹ , ๐œ‡ ๐‘‹ ) is said to be ๐œ‡ ๐‘‹ -neighbourhood of a point ๐‘ฅ โˆˆ ๐‘‹ if there exists a ๐œ‡ ๐‘‹ -open ๐‘ˆ such that ๐‘ฅ โˆˆ ๐‘ˆ โŠ† ๐‘ ๐‘ฅ .

Theorem 4.4. For a multifunction ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ , the following properties are equivalent:(1) ๐น is upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous at a point ๐‘ฅ โˆˆ ๐‘‹ ,(2) ๐‘ฅ โˆˆ ๐‘ ๐œ‡ ๐‘‹ ( ๐‘– ๐œ‡ ๐‘‹ ( ๐‘ ๐œ‡ ๐‘‹ ( ๐น + ( ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) ) ) ) ) for every ๐œ‡ ๐‘Œ -open set ๐‘‰ of ๐‘Œ containing ๐น ( ๐‘ฅ ) ,(3)for each ๐œ‡ ๐‘‹ -open neighbourhood ๐‘ˆ of ๐‘ฅ and each ๐œ‡ ๐‘Œ -open set ๐‘‰ of ๐‘Œ containing ๐น ( ๐‘ฅ ) , there exists a ๐œ‡ ๐‘‹ -open set ๐บ of ๐‘‹ such that โˆ… โ‰  ๐บ โŠ† ๐‘ˆ and ๐บ โŠ† ๐น + ( ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) ) ,(4)for each ๐œ‡ ๐‘Œ -open set ๐‘‰ of ๐‘Œ containing ๐น ( ๐‘ฅ ) , there exists ๐‘ˆ โˆˆ ๐œŽ ( ๐œ‡ ๐‘‹ , ๐‘ฅ ) such that ๐‘ˆ โŠ† ๐‘ ๐œ‡ ๐‘‹ ( ๐น + ( ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) ) ) .

Proof. ( 1 ) โ‡’ ( 2 ) Let ๐‘‰ be any ๐œ‡ ๐‘Œ -open set of ๐‘Œ such that ๐น ( ๐‘ฅ ) โŠ† ๐‘‰ . Then there exists ๐‘ˆ โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐‘ฅ ) such that ๐น ( ๐‘ˆ ) โŠ† ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) = ๐‘– ๐œ‡ ๐‘Œ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) . Then ๐‘ˆ โŠ† ๐น + ( ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) ) . Since ๐‘ˆ is ๐œ‡ ๐‘‹ - ๐›ฝ -open, we have ๐‘ฅ โˆˆ ๐‘ˆ โŠ† ๐‘ ๐œ‡ ๐‘‹ ( ๐‘– ๐œ‡ ๐‘‹ ( ๐‘ ๐œ‡ ๐‘‹ ( ๐‘ˆ ) ) ) โŠ† ๐‘ ๐œ‡ ๐‘‹ ( ๐‘– ๐œ‡ ๐‘‹ ( ๐‘ ๐œ‡ ๐‘‹ ( ๐น + ( ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) ) ) ) ) .
( 2 ) โ‡’ ( 3 ) Let ๐‘‰ be any ๐œ‡ ๐‘Œ -open set of ๐‘Œ containing ๐น ( ๐‘ฅ ) and ๐‘ˆ a ๐œ‡ ๐‘‹ -open set of ๐‘‹ containing ๐‘ฅ . Since ๐‘ฅ โˆˆ ๐‘ ๐œ‡ ๐‘‹ ( ๐‘– ๐œ‡ ๐‘‹ ( ๐‘ ๐œ‡ ๐‘‹ ( ๐น + ( ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) ) ) ) ) , we have ๐‘ˆ โˆฉ ( ๐‘– ๐œ‡ ๐‘‹ ( ๐‘ ๐œ‡ ๐‘‹ ( ๐น + ( ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) ) ) ) ) โ‰  โˆ… . Put ๐บ = ๐‘ˆ โˆฉ ( ๐‘– ๐œ‡ ๐‘‹ ( ๐‘ ๐œ‡ ๐‘‹ ( ๐น + ( ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) ) ) ) ) ; then ๐บ is a nonempty ๐œ‡ ๐‘‹ -open set, ๐บ โŠ† ๐‘ˆ ; and ๐บ โŠ† ๐‘– ๐œ‡ ๐‘‹ ( ๐‘ ๐œ‡ ๐‘‹ ( ๐น + ( ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) ) ) ) โŠ† ๐‘ ๐œ‡ ๐‘‹ ( ๐น + ( ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) ) ) .
( 3 ) โ‡’ ( 4 ) Let ๐‘‰ be any ๐œ‡ ๐‘Œ -open set of ๐‘Œ containing ๐น ( ๐‘ฅ ) . By ๐œ‡ ๐‘‹ ( ๐‘ฅ ) , we denote the family of all ๐œ‡ ๐‘‹ -open neighbourhoods of ๐‘ฅ . For each ๐‘ˆ โˆˆ ๐œ‡ ๐‘‹ ( ๐‘ฅ ) , there exists a ๐œ‡ ๐‘‹ -open set ๐บ ๐‘ˆ of ๐‘‹ such that โˆ… โ‰  ๐บ ๐‘ˆ โŠ† ๐‘ˆ and ๐บ ๐‘ˆ โŠ† ๐‘ ๐œ‡ ๐‘‹ ( ๐น + ( ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) ) ) . Put ๐‘Š = โˆช { ๐บ ๐‘ˆ โˆถ ๐‘ˆ โˆˆ ๐œ‡ ๐‘‹ ( ๐‘ฅ ) } ; then ๐‘Š is a ๐œ‡ ๐‘‹ -open set of ๐‘‹ , ๐‘ฅ โˆˆ ๐‘ ๐œ‡ ๐‘‹ ( ๐‘Š ) , and ๐‘Š โŠ† ๐‘ ๐œ‡ ๐‘‹ ( ๐น + ( ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) ) ) . Moreover, if we put ๐‘ˆ 0 = ๐‘Š โˆช { ๐‘ฅ } , then we obtain ๐‘ˆ 0 โˆˆ ๐œŽ ( ๐œ‡ ๐‘‹ , ๐‘ฅ ) and ๐‘ˆ 0 โŠ† ๐‘ ๐œ‡ ๐‘‹ ( ๐น + ( ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) ) ) .
( 4 ) โ‡’ ( 1 ) Let ๐‘‰ be any ๐œ‡ ๐‘Œ -open set of ๐‘Œ containing ๐น ( ๐‘ฅ ) . There exists ๐บ โˆˆ ๐œŽ ( ๐œ‡ ๐‘‹ , ๐‘ฅ ) such that ๐บ โŠ† ๐‘ ๐œ‡ ๐‘‹ ( ๐น + ( ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) ) ) . Therefore, we obtain ๐‘ฅ โˆˆ ๐บ โˆฉ ๐น + ( ๐‘‰ ) โŠ† ๐น + ( ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) ) โˆฉ ( ๐‘ ๐œ‡ ๐‘‹ ( ๐‘– ๐œ‡ ๐‘‹ ( ๐บ ) ) ) โŠ† ๐น + ( ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) ) โˆฉ ( ๐‘ ๐œ‡ ๐‘‹ ( ๐‘– ๐œ‡ ๐‘‹ ( ๐‘ ๐œ‡ ๐‘‹ ( ๐น + ( ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) ) ) ) ) ) = ๐‘– ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) ) ) .

Theorem 4.5. For a multifunction ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ , the following properties are equivalent:(1) ๐น is lower almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous at a point ๐‘ฅ of ๐‘‹ ,(2) ๐‘ฅ โˆˆ ๐‘ ๐œ‡ ๐‘‹ ( ๐‘– ๐œ‡ ๐‘‹ ( ๐‘ ๐œ‡ ๐‘‹ ( ๐น โˆ’ ( ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) ) ) ) ) for every ๐œ‡ ๐‘Œ -open set ๐‘‰ of ๐‘Œ such that ๐น ( ๐‘ฅ ) โˆฉ ๐‘‰ โ‰  โˆ… ,(3)for any ๐œ‡ ๐‘‹ -open neighbourhood ๐‘ˆ of ๐‘ฅ and a ๐œ‡ ๐‘Œ -open set ๐‘‰ of ๐‘Œ such that ๐น ( ๐‘ฅ ) โˆฉ ๐‘‰ โ‰  โˆ… , there exists a nonempty ๐œ‡ ๐‘‹ -open set ๐บ of ๐‘‹ such that ๐บ โŠ† ๐‘ˆ and ๐บ โŠ† ๐‘ ๐œ‡ ( ๐น โˆ’ ( ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) ) ) ,(4)for any ๐œ‡ ๐‘Œ -open set ๐‘‰ of ๐‘Œ such that ๐น ( ๐‘ฅ ) โˆฉ ๐‘‰ โ‰  โˆ… , there exists ๐‘ˆ โˆˆ ๐œŽ ( ๐œ‡ ๐‘‹ , ๐‘ฅ ) such that ๐‘ˆ โŠ† ๐‘ ๐œ‡ ๐‘‹ ( ๐น โˆ’ ( ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) ) ) .

Proof. The proof is similar to that of Theorem 4.4 and is thus omitted.

Theorem 4.6. For a multifunction ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ , the following properties are equivalent:(1) ๐น is upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous,(2)for each ๐‘ฅ โˆˆ ๐‘‹ and each ๐œ‡ ๐‘Œ -open set ๐‘‰ of ๐‘Œ containing ๐น ( ๐‘ฅ ) , there exists ๐‘ˆ โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐‘ฅ ) such that ๐น ( ๐‘ˆ ) โŠ† ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) ,(3)for each ๐‘ฅ โˆˆ ๐‘‹ and each ๐œ‡ ๐‘Œ ๐‘Ÿ -open set ๐‘‰ of ๐‘Œ containing ๐น ( ๐‘ฅ ) , there exists ๐‘ˆ โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐‘ฅ ) such that ๐น ( ๐‘ˆ ) โŠ† ๐‘‰ ,(4) ๐น + ( ๐‘‰ ) โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ ) for every ๐œ‡ ๐‘Œ ๐‘Ÿ -open set ๐‘‰ of ๐‘Œ ,(5) ๐น โˆ’ ( ๐‘€ ) is ๐œ‡ ๐‘‹ - ๐›ฝ -closed in ๐‘‹ for every ๐œ‡ ๐‘Œ ๐‘Ÿ -closed set ๐‘€ of ๐‘Œ ,(6) ๐น + ( ๐‘‰ ) โŠ† ๐‘– ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) ) ) for every ๐œ‡ ๐‘Œ -open set ๐‘‰ of ๐‘Œ ,(7) ๐‘ ๐›ฝ ๐‘‹ ( ๐น โˆ’ ( ๐‘– ๐œŽ ๐‘Œ ( ๐‘€ ) ) ) โŠ† ๐น โˆ’ ( ๐‘€ ) for every ๐œ‡ ๐‘Œ -closed set ๐‘€ of ๐‘Œ ,(8) ๐‘ ๐›ฝ ๐‘‹ ( ๐น โˆ’ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘– ๐œ‡ ๐‘Œ ( ๐‘€ ) ) ) ) โŠ† ๐น โˆ’ ( ๐‘€ ) for every ๐œ‡ ๐‘Œ -closed set ๐‘€ of ๐‘Œ ,(9) ๐‘ ๐›ฝ ๐‘‹ ( ๐น โˆ’ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘– ๐œ‡ ๐‘Œ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐ด ) ) ) ) ) โŠ† ๐น โˆ’ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐ด ) ) for every subset ๐ด of ๐‘Œ ,(10) ๐‘– ๐œ‡ ๐‘‹ ( ๐‘ ๐œ‡ ๐‘‹ ( ๐‘– ๐œ‡ ๐‘‹ ( ๐น โˆ’ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘– ๐œ‡ ๐‘Œ ( ๐‘€ ) ) ) ) ) ) โŠ† ๐น โˆ’ ( ๐‘€ ) for every ๐œ‡ ๐‘Œ -closed set ๐‘€ of ๐‘Œ ,(11) ๐‘– ๐œ‡ ๐‘‹ ( ๐‘ ๐œ‡ ๐‘‹ ( ๐‘– ๐œ‡ ๐‘‹ ( ๐น โˆ’ ( ๐‘– ๐œŽ ๐‘Œ ( ๐‘€ ) ) ) ) ) โŠ† ๐น โˆ’ ( ๐‘€ ) for every ๐œ‡ ๐‘Œ -closed set ๐‘€ of ๐‘Œ ,(12) ๐น + ( ๐‘‰ ) โŠ† ๐‘ ๐œ‡ ๐‘‹ ( ๐‘– ๐œ‡ ๐‘‹ ( ๐‘ ๐œ‡ ๐‘‹ ( ๐น + ( ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) ) ) ) ) for every ๐œ‡ ๐‘Œ -open set ๐‘‰ of ๐‘Œ .

Proof. ( 1 ) โ‡’ ( 2 ) The proof follows immediately from Definition 4.1(1).
( 2 ) โ‡’ ( 3 ) This is obvious.
( 3 ) โ‡’ ( 4 ) Let ๐‘‰ be any ๐œ‡ ๐‘Œ ๐‘Ÿ -open set of ๐‘Œ and ๐‘ฅ โˆˆ ๐น + ( ๐‘‰ ) . Then ๐น ( ๐‘ฅ ) โŠ† ๐‘‰ and there exists ๐‘ˆ ๐‘ฅ โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐‘ฅ ) such that ๐น ( ๐‘ˆ ๐‘ฅ ) โŠ† ๐‘‰ . Therefore, we have ๐‘ฅ โˆˆ ๐‘ˆ ๐‘ฅ โŠ† ๐น + ( ๐‘‰ ) and hence ๐น + ( ๐‘‰ ) โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ ) .
( 4 ) โ‡’ ( 5 ) This follows from the fact that ๐น + ( ๐‘Œ โˆ’ ๐‘€ ) = ๐‘‹ โˆ’ ๐น โˆ’ ( ๐‘€ ) for every subset ๐‘€ of ๐‘Œ .
( 5 ) โ‡’ ( 6 ) Let ๐‘‰ be any ๐œ‡ ๐‘‹ -open set of ๐‘Œ and ๐‘ฅ โˆˆ ๐น + ( ๐‘‰ ) . Then we have ๐น ( ๐‘ฅ ) โŠ† ๐‘‰ โŠ† ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) and hence ๐‘ฅ โˆˆ ๐น + ( ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) ) = ๐‘‹ โˆ’ ๐น โˆ’ ( ๐‘Œ โˆ’ ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) ) . Since ๐‘Œ โˆ’ ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) is ๐œ‡ ๐‘Œ ๐‘Ÿ -closed set of ๐‘Œ , ๐น โˆ’ ( ๐‘Œ โˆ’ ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) ) is ๐œ‡ ๐‘‹ - ๐›ฝ -closed in ๐‘‹ . Therefore, ๐น + ( ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) ) โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐‘ฅ ) and hence ๐‘ฅ โˆˆ ๐‘– ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) ) ) . Consequently, we obtain ๐น + ( ๐‘‰ ) โŠ† ๐‘– ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) ) ) .
( 6 ) โ‡’ ( 7 ) Let ๐‘€ be any ๐œ‡ ๐‘Œ -closed set of ๐‘Œ . Then, since ๐‘Œ โˆ’ ๐‘€ is ๐œ‡ ๐‘Œ -open, we obtain ๐‘‹ โˆ’ ๐น โˆ’ ( ๐‘€ ) = ๐น + ( ๐‘Œ โˆ’ ๐‘€ ) โŠ† ๐‘– ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘ ๐œŽ ๐‘Œ ( ๐‘Œ โˆ’ ๐‘€ ) ) ) = ๐‘– ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘Œ โˆ’ ๐‘– ๐œŽ ๐‘Œ ( ๐พ ) ) ) = ๐‘– ๐›ฝ ๐‘‹ ( ๐‘‹ โˆ’ ๐น โˆ’ ( ๐‘– ๐œŽ ๐‘Œ ๐‘ ( ๐‘€ ) ) ) = ๐‘‹ โˆ’ ๐›ฝ ๐‘‹ ( ๐น โˆ’ ( ๐‘– ๐œŽ ๐‘Œ ( ๐‘€ ) ) ) . Therefore, we obtain ๐‘ ๐›ฝ ๐‘‹ ( ๐น โˆ’ ( ๐‘– ๐œŽ ๐‘Œ ( ๐‘€ ) ) ) โŠ† ๐น โˆ’ ( ๐‘€ ) .
( 7 ) โ‡’ ( 8 ) The proof is obvious since ๐‘– ๐œŽ ๐‘Œ ( ๐‘€ ) = ๐‘ ๐œ‡ ๐‘Œ ( ๐‘– ๐œ‡ ๐‘Œ ( ๐‘€ ) ) for every ๐œ‡ ๐‘Œ -closed set ๐‘€ .
( 8 ) โ‡’ ( 9 ) The proof is obvious.
( 9 ) โ‡’ ( 1 0 ) Since ๐‘– ๐œ‡ ๐‘Œ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘– ๐œ‡ ๐‘Œ ( ๐ด ) ) ) โŠ† ๐‘ ๐›ฝ ๐‘Œ ( ๐ด ) for every subset ๐ด , for every ๐œ‡ ๐‘Œ -closed set ๐‘€ of ๐‘Œ , we have ๐‘– ๐œ‡ ๐‘‹ ( ๐‘ ๐œ‡ ๐‘‹ ( ๐‘– ๐œ‡ ๐‘‹ ( ๐น โˆ’ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘– ๐œ‡ ๐‘Œ ( ๐‘€ ) ) ) ) ) ) โŠ† ๐‘ ๐›ฝ ๐‘‹ ( ๐น โˆ’ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘– ๐œ‡ ๐‘Œ ( ๐‘€ ) ) ) ) = ๐‘ ๐›ฝ ๐‘‹ ( ๐น โˆ’ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘– ๐œ‡ ๐‘Œ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘€ ) ) ) ) ) โŠ† ๐น โˆ’ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘€ ) ) = ๐น โˆ’ ( ๐‘€ ) .
( 1 0 ) โ‡’ ( 1 1 ) The proof is obvious since ๐‘– ๐œŽ ๐‘Œ ( ๐‘€ ) = ๐‘ ๐œ‡ ๐‘Œ ( ๐‘– ๐œ‡ ๐‘Œ ( ๐‘€ ) ) for every ๐œ‡ ๐‘‹ -closed set ๐‘€ .
( 1 1 ) โ‡’ ( 1 2 ) Let ๐‘‰ be any ๐œ‡ ๐‘Œ -open set of ๐‘Œ . Then ๐‘Œ โˆ’ ๐‘‰ is ๐œ‡ ๐‘Œ -closed in ๐‘Œ and we have ๐‘– ๐œ‡ ๐‘‹ ( ๐‘ ๐œ‡ ๐‘‹ ( ๐‘– ๐œ‡ ๐‘‹ ( ๐น โˆ’ ( ๐‘– ๐œŽ ๐‘Œ ( ๐‘Œ โˆ’ ๐‘‰ ) ) ) ) ) โŠ† ๐น โˆ’ ( ๐‘Œ โˆ’ ๐‘‰ ) = ๐‘‹ โˆ’ ๐น + ( ๐‘‰ ) . Moreover, we have ๐‘– ๐œ‡ ๐‘‹ ( ๐‘ ๐œ‡ ๐‘‹ ( ๐‘– ๐œ‡ ๐‘‹ ( ๐น โˆ’ ( ๐‘– ๐œŽ ๐‘Œ ( ๐‘Œ โˆ’ ๐‘‰ ) ) ) ) ) = ๐‘– ๐œ‡ ๐‘‹ ( ๐‘ ๐œ‡ ๐‘‹ ( ๐‘– ๐œ‡ ๐‘‹ ( ๐น โˆ’ ( ๐‘Œ โˆ’ ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) ) ) ) ) = ๐‘– ๐œ‡ ๐‘‹ ( ๐‘ ๐œ‡ ๐‘‹ ( ๐‘– ๐œ‡ ๐‘‹ ( ๐‘‹ โˆ’ ๐น + ( ๐‘ ๐œŽ ๐‘Œ ๐‘ ( ๐‘‰ ) ) ) ) ) = ๐‘‹ โˆ’ ๐œ‡ ๐‘‹ ( ๐‘– ๐œ‡ ๐‘‹ ( ๐‘ ๐œ‡ ๐‘‹ ( ๐น + ( ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) ) ) ) ) . Therefore, we obtain ๐น + ( ๐‘‰ ) โŠ† ๐‘ ๐œ‡ ๐‘‹ ( ๐‘– ๐œ‡ ๐‘‹ ( ๐‘ ๐œ‡ ๐‘‹ ( ๐น + ( ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) ) ) ) ) .
( 1 2 ) โ‡’ ( 1 ) Let ๐‘ฅ be any point of ๐‘‹ and ๐‘‰ any ๐œ‡ ๐‘Œ -open set of ๐‘Œ containing ๐น ( ๐‘ฅ ) . Then ๐‘ฅ โˆˆ ๐น + ( ๐‘‰ ) โŠ† ๐‘ ๐œ‡ ๐‘‹ ( ๐‘– ๐œ‡ ๐‘‹ ( ๐‘ ๐œ‡ ๐‘‹ ( ๐น + ( ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) ) ) ) ) and hence ๐น is upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous at ๐‘ฅ by Theorem 4.4.

Theorem 4.7. The following are equivalent for a multifunction ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ :(1) ๐น is lower almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous,(2)for each ๐‘ฅ โˆˆ ๐‘‹ and each ๐œ‡ ๐‘Œ -open set ๐‘‰ of ๐‘Œ such that ๐น ( ๐‘ฅ ) โˆฉ ๐‘‰ โ‰  โˆ… , there exists ๐‘ˆ โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐‘ฅ ) such that ๐‘ˆ โŠ† ๐น โˆ’ ( ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) ) ,(3)for each ๐‘ฅ โˆˆ ๐‘‹ and each ๐œ‡ ๐‘Œ ๐‘Ÿ -open set ๐‘‰ of ๐‘Œ such that ๐น ( ๐‘ฅ ) โˆฉ ๐‘‰ โ‰  โˆ… , there exists ๐‘ˆ โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐‘ฅ ) such that ๐‘ˆ โŠ† ๐น โˆ’ ( ๐‘‰ ) ,(4) ๐น โˆ’ ( ๐‘‰ ) โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ ) for every ๐œ‡ ๐‘Œ ๐‘Ÿ -open set ๐‘‰ of ๐‘Œ ,(5) ๐น + ( ๐‘€ ) is ๐œ‡ ๐‘‹ - ๐›ฝ -closed in ๐‘‹ for every ๐œ‡ ๐‘Œ ๐‘Ÿ -closed set ๐‘€ of ๐‘Œ ,(6) ๐น โˆ’ ( ๐‘‰ ) โŠ† ๐‘– ๐›ฝ ๐‘‹ ( ๐น โˆ’ ( ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) ) ) for every ๐œ‡ ๐‘Œ -open set ๐‘‰ of ๐‘Œ ,(7) ๐‘ ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘– ๐œŽ ๐‘Œ ( ๐‘€ ) ) ) โŠ† ๐น + ( ๐‘€ ) for every ๐œ‡ ๐‘Œ -closed set ๐‘€ of ๐‘Œ ,(8) ๐‘ ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘– ๐œ‡ ๐‘Œ ( ๐‘€ ) ) ) ) โŠ† ๐น + ( ๐‘€ ) for every ๐œ‡ ๐‘Œ -closed set ๐‘€ of ๐‘Œ ,(9) ๐‘ ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘– ๐œ‡ ๐‘Œ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐ด ) ) ) ) ) โŠ† ๐น + ( ๐‘ ๐œ‡ ๐‘Œ ( ๐ด ) ) for every subset ๐ด of ๐‘Œ ,(10) ๐‘– ๐œ‡ ๐‘‹ ( ๐‘ ๐œ‡ ๐‘‹ ( ๐‘– ๐œ‡ ๐‘‹ ( ๐น + ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘– ๐œ‡ ๐‘Œ ( ๐‘€ ) ) ) ) ) ) โŠ† ๐น + ( ๐‘€ ) for every ๐œ‡ ๐‘Œ -closed set ๐‘€ of ๐‘Œ ,(11) ๐‘– ๐œ‡ ๐‘‹ ( ๐‘ ๐œ‡ ๐‘‹ ( ๐‘– ๐œ‡ ๐‘‹ ( ๐น + ( ๐‘– ๐œŽ ๐‘Œ ( ๐‘€ ) ) ) ) ) โŠ† ๐น + ( ๐‘€ ) for every ๐œ‡ ๐‘Œ -closed set ๐‘€ of ๐‘Œ ,(12) ๐น โˆ’ ( ๐‘‰ ) โŠ† ๐‘ ๐œ‡ ๐‘‹ ( ๐‘– ๐œ‡ ๐‘‹ ( ๐‘ ๐œ‡ ๐‘‹ ( ๐น โˆ’ ( ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) ) ) ) ) for every ๐œ‡ ๐‘Œ -open set ๐‘‰ of ๐‘Œ .

Proof. The proof is similar to that of Theorem 4.6 and is thus omitted.

Theorem 4.8. The following are equivalent for a multifunction ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ :(1) ๐น is upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous,(2) ๐‘ ๐›ฝ ๐‘‹ ( ๐น โˆ’ ( ๐‘‰ ) ) โŠ† ๐น โˆ’ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) for every ๐‘‰ โˆˆ ๐›ฝ ( ๐œ‡ ๐‘Œ ) ,(3) ๐‘ ๐›ฝ ๐‘‹ ( ๐น โˆ’ ( ๐‘‰ ) ) โŠ† ๐น โˆ’ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) for every ๐‘‰ โˆˆ ๐œŽ ( ๐œ‡ ๐‘Œ ) ,(4) ๐น + ( ๐‘‰ ) โŠ† ๐‘– ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘– ๐œ‡ ๐‘Œ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) ) ) for every ๐‘‰ โˆˆ ๐œ‹ ( ๐œ‡ ๐‘Œ ) .

Proof. ( 1 ) โ‡’ ( 2 ) Let ๐‘‰ be any ๐œ‡ ๐‘Œ - ๐›ฝ -open set of ๐‘Œ . Since ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) is ๐œ‡ ๐‘Œ ๐‘Ÿ -closed, by Theorem 4.6โ€‰โ€‰ ๐น โˆ’ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) is ๐œ‡ ๐‘‹ - ๐›ฝ -closed in ๐‘‹ and ๐น โˆ’ ( ๐‘‰ ) โŠ† ๐น โˆ’ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) . Therefore, we obtain ๐‘ ๐›ฝ ๐‘‹ ( ๐น โˆ’ ( ๐‘‰ ) ) โŠ† ๐น โˆ’ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) .
( 2 ) โ‡’ ( 3 ) This is obvious since ๐œŽ ( ๐œ‡ ๐‘Œ ) โŠ† ๐›ฝ ( ๐œ‡ ๐‘Œ ) .
( 3 ) โ‡’ ( 4 ) Let ๐‘‰ โˆˆ ๐œ‹ ( ๐œ‡ ๐‘Œ ) . Then, we have ๐‘‰ โŠ† ๐‘– ๐œ‡ ๐‘Œ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) and ๐‘Œ โˆ’ ๐‘‰ โŠ‡ ๐‘ ๐œ‡ ๐‘Œ ( ๐‘– ๐œ‡ ๐‘Œ ( ๐‘Œ โˆ’ ๐‘‰ ) ) . Since ๐‘ ๐œ‡ ๐‘Œ ( ๐‘– ๐œ‡ ๐‘Œ ( ๐‘Œ โˆ’ ๐‘‰ ) ) โˆˆ ๐œŽ ( ๐œ‡ ๐‘Œ ) , we have ๐‘‹ โˆ’ ๐น + ( ๐‘‰ ) = ๐น โˆ’ ( ๐‘Œ โˆ’ ๐‘‰ ) โŠ‡ ๐น โˆ’ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘– ๐œ‡ ๐‘Œ ( ๐‘Œ โˆ’ ๐‘‰ ) ) ) โŠ‡ ๐‘ ๐›ฝ ๐‘‹ ( ๐น โˆ’ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘– ๐œ‡ ๐‘Œ ( ๐‘Œ โˆ’ ๐‘‰ ) ) ) ) = ๐‘ ๐›ฝ ๐‘‹ ( ๐น โˆ’ ( ๐‘Œ โˆ’ ๐‘– ๐œ‡ ๐‘Œ ( ๐‘ ๐œ‡ ๐‘Œ ๐‘ ( ๐‘‰ ) ) ) ) = ๐›ฝ ๐‘‹ ( ๐‘‹ โˆ’ ๐น + ( ๐‘– ๐œ‡ ๐‘Œ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) ) ) = ๐‘‹ โˆ’ ๐‘– ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘– ๐œ‡ ๐‘Œ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) ) ) . Therefore, we obtain ๐น + ( ๐‘‰ ) โŠ† ๐‘– ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘– ๐œ‡ ๐‘Œ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) ) ) .
( 4 ) โ‡’ ( 1 ) Let ๐‘‰ be any ๐œ‡ ๐‘Œ ๐‘Ÿ -open set of ๐‘Œ . Since ๐‘‰ โˆˆ ๐œ‹ ( ๐œ‡ ๐‘Œ ) , we have ๐น + ( ๐‘‰ ) โŠ† ๐‘– ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘– ๐œ‡ ๐‘Œ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) ) ) = ๐‘– ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘‰ ) ) and hence ๐น + ( ๐‘‰ ) โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ ) . It follows from Theorem 4.6 that ๐น is upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous.

Theorem 4.9. The following are equivalent for a multifunction ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ :(1) ๐น is lower almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous,(2) ๐‘ ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘‰ ) ) โŠ† ๐น + ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) for every ๐‘‰ โˆˆ ๐›ฝ ( ๐œ‡ ๐‘Œ ) ,(3) ๐‘ ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘‰ ) ) โŠ† ๐น + ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) for every ๐‘‰ โˆˆ ๐œŽ ( ๐œ‡ ๐‘Œ ) ,(4) ๐น โˆ’ ( ๐‘‰ ) โŠ† ๐‘– ๐›ฝ ๐‘‹ ( ๐น โˆ’ ( ๐‘– ๐œ‡ ๐‘Œ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) ) ) for every ๐‘‰ โˆˆ ๐œ‹ ( ๐œ‡ ๐‘Œ ) .

Proof. The proof is similar to that of Theorem 4.8 and is thus omitted.

For a multifunction ๐‘‹ โ†’ ๐‘Œ , by ๐‘ ๐œ‡ ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ we denote a multifunction defined as follows: ( ๐‘ ๐œ‡ ๐น ) ( ๐‘ฅ ) = ๐‘ ๐œ‡ ๐‘Œ ( ๐น ( ๐‘ฅ ) ) for each ๐‘ฅ โˆˆ ๐‘‹ . Similarly, we can define ๐‘ ๐›ฝ ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ , ๐‘ ๐œŽ ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ , ๐‘ ๐œ‹ ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ , and ๐‘ ๐›ผ ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ .

Theorem 4.10. A multifunction ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ is upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous if and only if ๐‘ ๐œŽ ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ is upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous.

Proof. Suppose that ๐น is upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous. Let ๐‘ฅ โˆˆ ๐‘‹ , and let ๐‘‰ be any ๐œ‡ ๐‘Œ -open set of ๐‘Œ such that ( ๐‘ ๐œŽ ๐น ) ( ๐‘ฅ ) โŠ† ๐‘‰ . Then ๐น ( ๐‘ฅ ) โŠ† ๐‘‰ and by Theorem 4.6 there exists ๐‘ˆ โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐‘ฅ ) such that ๐น ( ๐‘ˆ ) โŠ† ๐‘ ๐›ฝ ๐‘Œ ( ๐‘‰ ) . For each ๐‘ข โˆˆ ๐‘ˆ , ๐น ( ๐‘ข ) โŠ† ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) and hence ๐‘ ๐œŽ ๐‘Œ ( ๐น ( ๐‘ˆ ) ) โŠ† ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) . Therefore, we have ( ๐‘ ๐œŽ ๐น ) ( ๐‘ˆ ) โŠ† ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) and by Theorem 4.6โ€‰โ€‰ ๐‘ ๐œŽ ๐น is is upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous.
Conversely, suppose that ๐‘ ๐œŽ ๐น is upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous. Let ๐‘ฅ โˆˆ ๐‘‹ , and let ๐‘‰ be any ๐œ‡ ๐‘Œ -open set of ๐‘Œ containing ๐น ( ๐‘ฅ ) . Then ๐น ( ๐‘ฅ ) โŠ† ๐‘‰ and ๐‘ ๐œŽ ๐‘Œ ( ๐น ( ๐‘ฅ ) ) โŠ† ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) . Since ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) = ๐‘– ๐œ‡ ๐‘Œ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) is ๐œ‡ ๐‘Œ -open, there exists ๐‘ˆ โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐‘ฅ ) such that ( ๐‘ ๐œŽ ๐น ) ( ๐‘ˆ ) โŠ† ๐‘ ๐œŽ ๐‘Œ ( ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) ) = ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) . Therefore, we have ๐น ( ๐‘ˆ ) โŠ† ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) and hence ๐น is upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous.

Definition 4.11. A subset ๐ด of a generalized topological space ( ๐‘‹ , ๐œ‡ ๐‘‹ ) is said to be ๐œ‡ ๐‘‹ - ๐›ผ -paracompact if every cover of ๐ด by ๐œ‡ ๐‘‹ -open sets of ๐‘‹ is refined by a cover of ๐ด that consists of ๐œ‡ ๐‘‹ -open sets of ๐‘‹ and is locally finite in ๐‘‹ .

Definition 4.12. A subset ๐ด of a generalized topological space ( ๐‘‹ , ๐œ‡ ๐‘‹ ) is said to be ๐œ‡ ๐‘‹ - ๐›ผ -regular if, for each point ๐‘ฅ โˆˆ ๐ด and each ๐œ‡ ๐‘‹ -open set ๐‘ˆ of ๐‘‹ containing ๐‘ฅ , there exists a ๐œ‡ ๐‘‹ -open set ๐บ of ๐‘‹ such that ๐‘ฅ โˆˆ ๐บ โŠ† ๐‘ ๐œ‡ ๐‘‹ ( ๐บ ) โŠ† ๐‘ˆ .

Lemma 4.13. If ๐ด is a ๐œ‡ ๐‘‹ - ๐›ผ -regular ๐œ‡ ๐‘‹ - ๐›ผ -paracompact subset of a quasitopological space ( ๐‘‹ , ๐œ‡ ๐‘‹ ) and ๐‘ˆ is a ๐œ‡ ๐‘‹ -open neighbourhood of ๐ด , then there exists a ๐œ‡ ๐‘‹ -open set ๐บ of ๐‘‹ such that ๐ด โŠ† ๐บ โŠ† ๐‘ ๐œ‡ ๐‘‹ ( ๐บ ) โŠ† ๐‘ˆ .

Lemma 4.14. Let ( ๐‘‹ , ๐œ‡ ๐‘‹ ) be a generalized topological space and ( ๐‘Œ , ๐œ‡ ๐‘Œ ) a quasitopological space. If ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ is a multifunction such that ๐น ( ๐‘ฅ ) is ๐œ‡ ๐‘Œ - ๐›ผ -paracompact ๐œ‡ ๐‘Œ - ๐›ผ -regular for each ๐‘ฅ โˆˆ ๐‘‹ , then for each ๐œ‡ ๐‘Œ -open set ๐‘‰ of ๐‘Œ โ€‰โ€‰ ๐บ + ( ๐‘‰ ) = ๐น + ( ๐‘‰ ) , where ๐บ denotes ๐‘ ๐›ฝ ๐น , ๐‘ ๐œ‹ ๐น , ๐‘ ๐›ผ ๐น , or ๐‘ ๐œ‡ ๐น .

Proof. Let ๐‘‰ be any ๐œ‡ ๐‘Œ -open set of ๐‘Œ and ๐‘ฅ โˆˆ ๐บ + ( ๐‘‰ ) . Thus ๐บ ( ๐‘ฅ ) โŠ† ๐‘‰ and ๐น ( ๐‘ฅ ) โŠ† ๐บ ( ๐‘ฅ ) โŠ† ๐‘‰ . We have ๐‘ฅ โˆˆ ๐น + ( ๐‘‰ ) and hence ๐บ + ( ๐‘‰ ) โŠ† ๐น + ( ๐‘‰ ) . Let ๐‘ฅ โˆˆ ๐น + ( ๐‘‰ ) ; then ๐น ( ๐‘ฅ ) โŠ† ๐‘‰ . By Lemma 4.13, there exists a ๐œ‡ ๐‘Œ -open set ๐‘Š of ๐‘Œ such that ๐น ( ๐‘ฅ ) โŠ† ๐‘Š โŠ† ๐‘ ๐œ‡ ๐‘Œ ( ๐‘Š ) โŠ† ๐‘‰ ; hence ๐บ ( ๐‘ฅ ) โŠ† ๐‘ ๐œ‡ ๐‘Œ ( ๐‘Š ) โŠ† ๐‘‰ . Therefore, we have ๐‘ฅ โˆˆ ๐บ + ( ๐‘‰ ) and ๐น + ( ๐‘‰ ) โŠ† ๐บ + ( ๐‘‰ ) .

Theorem 4.15. Let ( ๐‘‹ , ๐œ‡ ๐‘‹ ) be a generalized topological space and ( ๐‘Œ , ๐œ‡ ๐‘Œ ) a quasitopological space. Let ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ be a multifunction such that ๐น ( ๐‘ฅ ) is ๐œ‡ ๐‘Œ - ๐›ผ -paracompact and ๐œ‡ ๐‘Œ - ๐›ผ -regular for each ๐‘ฅ โˆˆ ๐‘‹ . Then the following are equivalent:(1) ๐น is upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous,(2) ๐‘ ๐›ฝ ๐น is upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous,(3) ๐‘ ๐œ‹ ๐น is upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous,(4) ๐‘ ๐›ผ ๐น is upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous,(5) ๐‘ ๐œ‡ ๐น is upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous.

Proof. Similarly to Lemma 4.14, we put ๐บ = ๐‘ ๐›ฝ ๐น , ๐‘ ๐œ‹ ๐น , ๐‘ ๐›ผ ๐น , or ๐‘ ๐œ‡ ๐น . First, suppose that ๐น is upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous. Let ๐‘ฅ โˆˆ ๐‘‹ , and let ๐‘‰ be any ๐œ‡ ๐‘Œ -open set of ๐‘Œ containing ๐บ ( ๐‘ฅ ) . By Lemma 4.14, ๐‘ฅ โˆˆ ๐บ + ( ๐‘‰ ) = ๐น + ( ๐‘‰ ) and there exists ๐‘ˆ โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐‘ฅ ) such that ๐น ( ๐‘ˆ ) โŠ† ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) . Since ๐น ( ๐‘ข ) is ๐œ‡ ๐‘Œ - ๐›ผ -paracompact and ๐œ‡ ๐‘Œ - ๐›ผ -regular for each ๐‘ข โˆˆ ๐‘ˆ , by Lemma 4.13 there exists a ๐œ‡ ๐‘Œ -open set ๐ป such that ๐น ( ๐‘ข ) โŠ† ๐ป โŠ† ๐‘ ๐œ‡ ๐‘Œ ( ๐ป ) โŠ‚ ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) ; hence ๐บ ( ๐‘ข ) โŠ† ๐‘ ๐œ‡ ๐‘Œ ( ๐ป ) โŠ† ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) for each ๐‘ข โˆˆ ๐‘ˆ . This shows that ๐บ is upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous.
Conversely, suppose that ๐บ is upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous. Let ๐‘ฅ โˆˆ ๐‘‹ , and let ๐‘‰ be any ๐œ‡ ๐‘Œ -open set of ๐‘Œ containing ๐น ( ๐‘ฅ ) . By Lemma 4.14, ๐‘ฅ โˆˆ ๐น + ( ๐‘‰ ) = ๐บ + ( ๐‘‰ ) and hence ๐บ ( ๐‘ฅ ) โŠ† ๐‘‰ . There exists ๐‘ˆ โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐‘ฅ ) such that ๐บ ( ๐‘ˆ ) โŠ† ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) . Therefore, we obtain ๐น ( ๐‘ˆ ) โŠ† ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) . This shows that ๐น is upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous.

Lemma 4.16. If ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ is a multifunction, then for each ๐œ‡ ๐‘Œ -open set ๐‘‰ of ( ๐‘Œ , ๐œ‡ ๐‘Œ ) ๐บ โˆ’ ( ๐‘‰ ) = ๐น โˆ’ ( ๐‘‰ ) , where ๐บ denotes ๐‘ ๐›ฝ ๐น , ๐‘ ๐œ‹ ๐น , ๐‘ ๐›ผ ๐น , or ๐‘ ๐œ‡ ๐น .

Lemma 4.17. ๐‘ ๐œŽ ๐‘‹ ( ๐‘‰ ) = ๐‘– ๐œ‡ ๐‘‹ ( ๐‘ ๐œ‡ ๐‘‹ ( ๐‘‰ ) ) for every ๐œ‡ ๐‘‹ -preopen set ๐‘‰ of a generalized topological space ( ๐‘‹ , ๐œ‡ ๐‘‹ ) .

Theorem 4.18. Let ( ๐‘‹ , ๐œ‡ ๐‘‹ ) be a generalized topological space and ( ๐‘Œ , ๐œ‡ ๐‘Œ ) a quasitopological space. For a multifunction ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ , the following are equivalent:(1) ๐น is lower almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous,(2) ๐‘ ๐›ฝ ๐น is lower almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous,(3) ๐‘ ๐œŽ ๐น is lower almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous,(4) ๐‘ ๐œ‹ ๐น is lower almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous,(5) ๐‘ ๐›ผ ๐น is lower almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous,(6) ๐‘ ๐œ‡ ๐น is lower almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous.

Proof. Similarly to Lemma 4.14, we put ๐บ = ๐‘ ๐›ฝ ๐น , ๐‘ ๐œ‹ ๐น , ๐‘ ๐œŽ ๐น , ๐‘ ๐›ผ ๐น , or ๐‘ ๐œ‡ ๐น . First, suppose that ๐น is lower almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous. Let ๐‘ฅ โˆˆ ๐‘‹ , and let ๐‘‰ be any ๐œ‡ ๐‘Œ -open set of ๐‘Œ such that ๐บ ( ๐‘ฅ ) โˆฉ ๐‘‰ โ‰  โˆ… . Since ๐‘‰ is ๐œ‡ ๐‘Œ -open, ๐น ( ๐‘ฅ ) โˆฉ ๐‘‰ โ‰  โˆ… and there exists ๐‘ˆ โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐‘ฅ ) such that ๐น ( ๐‘ข ) โˆฉ ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) โ‰  โˆ… for each ๐‘ข โˆˆ ๐‘ˆ . Therefore, we obtain ๐บ ( ๐‘ข ) โˆฉ ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) โ‰  โˆ… for each ๐‘ข โˆˆ ๐‘ˆ . This shows that ๐บ is lower almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous.
Conversely, suppose that ๐บ is lower almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous. Let ๐‘ฅ โˆˆ ๐‘‹ , and let ๐‘‰ be any ๐œ‡ ๐‘Œ -open set of ๐‘Œ such that ๐น ( ๐‘ฅ ) โˆฉ ๐‘‰ โ‰  โˆ… . Since ๐น ( ๐‘ฅ ) โŠ† ๐บ ( ๐‘ฅ ) , ๐บ ( ๐‘ฅ ) โˆฉ ๐‘‰ โ‰  โˆ… and there exists ๐‘ˆ โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐‘ฅ ) such that ๐บ ( ๐‘ข ) โˆฉ ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) โ‰  โˆ… for each ๐‘ข โˆˆ ๐‘ˆ . By Lemma 4.17โ€‰โ€‰ ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) = ๐‘– ๐œ‡ ๐‘Œ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) and ๐น ( ๐‘ข ) โˆฉ ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) โ‰  โˆ… for each ๐‘ข โˆˆ ๐‘ˆ . Therefore, by Theorem 4.7โ€‰โ€‰ ๐น is lower almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous.

For a multifunction ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ , the graph multifunction ๐บ ๐น โˆถ ๐‘‹ โ†’ ๐‘‹ ร— ๐‘Œ is defined as follows: ๐บ ๐น ( ๐‘ฅ ) = { ๐‘ฅ } ร— ๐น ( ๐‘ฅ ) for every ๐‘ฅ โˆˆ ๐‘‹ .

Lemma 4.19 (see [25]). The following hold for a multifunction ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ :(a) ๐บ + ๐น ( ๐ด ร— ๐ต ) = ๐ด โˆฉ ๐น + ( ๐ต ) ,(b) ๐บ โˆ’ ๐น ( ๐ด ร— ๐ต ) = ๐ด โˆฉ ๐น โˆ’ ( ๐ต ) , for any subsets ๐ด โŠ† ๐‘‹ and ๐ต โŠ† ๐‘Œ .

Theorem 4.20. Let ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ be a multifunction such that ๐น ( ๐‘ฅ ) is ๐œ‡ ๐‘Œ -compact for each ๐‘ฅ โˆˆ ๐‘‹ . Then, ๐น is upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous if and only if ๐บ ๐น โˆถ ๐‘‹ โ†’ ๐‘‹ ร— ๐‘Œ is upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘‹ ร— ๐‘Œ ) -continuous.

Proof. Suppose that ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ is upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous. Let ๐‘ฅ โˆˆ ๐‘‹ , and let ๐‘Š be any ๐œ‡ ๐‘‹ ร— ๐‘Œ ๐‘Ÿ -open set of ๐‘‹ ร— ๐‘Œ containing ๐บ ๐น ( ๐‘ฅ ) . For each ๐‘ฆ โˆˆ ๐น ( ๐‘ฅ ) , there exist ๐œ‡ ๐‘‹ ๐‘Ÿ -open set ๐‘ˆ ( ๐‘ฆ ) โŠ† ๐‘‹ and ๐œ‡ ๐‘Œ ๐‘Ÿ -open set ๐‘‰ ( ๐‘ฆ ) โŠ† ๐‘Œ such that ( ๐‘ฅ , ๐‘ฆ ) โˆˆ ๐‘ˆ ( ๐‘ฆ ) ร— ๐‘‰ ( ๐‘ฆ ) โŠ† ๐‘Š . The family { ๐‘‰ ( ๐‘ฆ ) โˆถ ๐‘ฆ โˆˆ ๐น ( ๐‘ฅ ) } is a ๐œ‡ ๐‘Œ -open cover of ๐น ( ๐‘ฅ ) and ๐น ( ๐‘ฅ ) is ๐œ‡ ๐‘Œ -compact. Therefore, there exist a finite number of points, say, ๐‘ฆ 1 , ๐‘ฆ 2 ,โ€ฆ, ๐‘ฆ ๐‘› in ๐น ( ๐‘ฅ ) such that ๐น ( ๐‘ฅ ) โŠ† โˆช { ๐‘‰ ( ๐‘ฆ ๐‘– ) โˆถ 1 โ‰ค ๐‘– โ‰ค ๐‘› } . Set ๐’ฐ = โˆฉ { ๐‘ˆ ( ๐‘ฆ ๐‘– ) โˆถ 1 โ‰ค ๐‘– โ‰ค ๐‘› } and ๐’ฑ = โˆช { ๐‘‰ ( ๐‘ฆ ๐‘– ) โˆถ 1 โ‰ค ๐‘– โ‰ค ๐‘› } . Then ๐’ฐ is ๐œ‡ ๐‘‹ -open in ๐‘‹ and ๐’ฑ is โ€‰โ€‰ ๐œ‡ ๐‘Œ -open in ๐‘Œ and { ๐‘ฅ } ร— ๐น ( ๐‘ฅ ) โŠ† ๐’ฐ ร— ๐’ฑ โŠ† ๐’ฐ ร— ๐‘ ๐œŽ ๐‘Œ ( ๐’ฑ ) โŠ† ๐‘ ๐œŽ ๐‘‹ ร— ๐‘Œ ( ๐‘Š ) = ๐‘Š . Since ๐น is upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous, there exists ๐‘ˆ 0 โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ ) containing ๐‘ฅ such that ๐น ( ๐‘ˆ 0 ) โŠ† ๐‘ ๐œŽ ๐‘Œ ( ๐’ฑ ) . By Lemma 4.19, we have ๐’ฐ โˆฉ ๐‘ˆ 0 โŠ† ๐’ฐ โˆฉ ๐น + ( ๐‘ ๐œŽ ๐‘Œ ( ๐’ฑ ) ) = ๐บ + ๐น ( ๐’ฐ ร— ๐‘ ๐œŽ ๐‘Œ ( ๐’ฑ ) ) โŠ† ๐บ + ๐น ( ๐‘Š ) . Therefore, we obtain ๐’ฐ โˆฉ ๐‘ˆ 0 โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐‘ฅ ) and ๐บ ๐น ( ๐’ฐ โˆฉ ๐‘ˆ 0 ) โŠ† ๐‘Š . This shows that ๐บ ๐น is upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘‹ ร— ๐‘Œ ) -continuous.
Conversely, suppose that ๐บ ๐น โˆถ ๐‘‹ โ†’ ๐‘‹ ร— ๐‘Œ is upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘‹ ร— ๐‘Œ ) -continuous. Let ๐‘ฅ โˆˆ ๐‘‹ , and let ๐‘‰ be any ๐œ‡ ๐‘Œ -open set of ๐‘Œ containing ๐น ( ๐‘ฅ ) . Since ๐‘‹ ร— ๐‘‰ is ๐œ‡ ๐‘‹ ร— ๐‘Œ ๐‘Ÿ -open in ๐‘‹ ร— ๐‘Œ and ๐บ ๐น ( ๐‘ฅ ) โŠ† ๐‘‹ ร— ๐‘‰ , there exists ๐‘ˆ โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐‘ฅ ) such that ๐บ ๐น ( ๐‘ˆ ) โŠ† ๐‘‹ ร— ๐‘‰ . By Lemma 4.19, we have ๐‘ˆ โŠ† ๐บ + ๐น ( ๐‘‹ ร— ๐‘‰ ) = ๐น + ( ๐‘‰ ) and ๐น ( ๐‘ˆ ) โŠ† ๐‘‰ . This shows that ๐น is upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous.

Theorem 4.21. A multifunction ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ is lower almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous if and only if ๐บ ๐น โˆถ ๐‘‹ โ†’ ๐‘‹ ร— ๐‘Œ is lower almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘‹ ร— ๐‘Œ ) -continuous.

Proof. Suppose that ๐น is lower almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous. Let ๐‘ฅ โˆˆ ๐‘‹ , and let ๐‘Š be any ๐œ‡ ๐‘‹ ร— ๐‘Œ ๐‘Ÿ -open set of ๐‘‹ ร— ๐‘Œ such that ๐‘ฅ โˆˆ ๐บ โˆ’ ๐น ( ๐‘Š ) . Since ๐‘Š โˆฉ ( { ๐‘ฅ } ร— ๐น ( ๐‘ฅ ) ) โ‰  โˆ… , there exists ๐‘ฆ โˆˆ ๐น ( ๐‘ฅ ) such that ( ๐‘ฅ , ๐‘ฆ ) โˆˆ ๐‘Š and hence ( ๐‘ฅ , ๐‘ฆ ) โˆˆ ๐‘ˆ ร— ๐‘‰ โŠ† ๐‘Š for some ๐œ‡ ๐‘‹ ๐‘Ÿ -open set ๐‘ˆ โŠ† ๐‘‹ and ๐œ‡ ๐‘Œ ๐‘Ÿ -open set ๐‘‰ โŠ† ๐‘Œ . Since ๐น ( ๐‘ฅ ) โˆฉ ๐‘‰ โ‰  โˆ… , there exists ๐บ โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐‘ฅ ) such that ๐บ โŠ† ๐น โˆ’ ( ๐‘‰ ) . By Lemma 4.19, we have ๐‘ˆ โˆฉ ๐บ โŠ† ๐‘ˆ โˆฉ ๐น โˆ’ ( ๐‘‰ ) = ๐บ โˆ’ ๐น ( ๐‘ˆ ร— ๐‘‰ ) โŠ† ๐บ โˆ’ ๐น ( ๐‘Š ) . Moreover, we have ๐‘ˆ โˆฉ ๐บ โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐‘ฅ ) and hence ๐บ ๐น is lower almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘‹ ร— ๐‘Œ ) -continuous.
Conversely, suppose that ๐บ ๐น is lower almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous. Let ๐‘ฅ โˆˆ ๐‘‹ , and let ๐‘‰ be a ๐œ‡ ๐‘Œ ๐‘Ÿ -open set of ๐‘Œ such that ๐‘ฅ โˆˆ ๐น โˆ’ ( ๐‘‰ ) . Then ๐‘‹ ร— ๐‘‰ is ๐œ‡ ๐‘‹ ร— ๐‘Œ ๐‘Ÿ -open in ๐‘‹ ร— ๐‘Œ and ๐บ ๐น ( ๐‘ฅ ) โˆฉ ( ๐‘‹ ร— ๐‘‰ ) = ( { ๐‘ฅ } ร— ๐น ( ๐‘ฅ ) ) โˆฉ ( ๐‘‹ ร— ๐‘‰ ) = { ๐‘ฅ } ร— ( ๐น ( ๐‘ฅ ) โˆฉ ๐‘‰ ) โ‰  โˆ… . Since ๐บ ๐น is lower almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘‹ ร— ๐‘Œ ) -continuous, there exists ๐‘ˆ โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐‘ฅ ) such that ๐‘ˆ โŠ† ๐บ โˆ’ ๐น ( ๐‘‹ ร— ๐‘‰ ) . By Lemma 4.19, we obtain ๐‘ˆ โŠ† ๐น โˆ’ ( ๐‘‰ ) . This shows that ๐น is lower almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous.

Lemma 4.22. Let ๐‘“ โˆถ ๐‘‹ โ†’ ๐‘Œ be ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous and ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -open. If ๐ด is ๐œ‡ ๐‘‹ - ๐›ฝ -open in ๐‘‹ , then ๐‘“ ( ๐ด ) is ๐œ‡ ๐‘‹ - ๐›ฝ -open in ๐‘Œ .

Theorem 4.23. Let ๐œ‡ ๐‘‹ ๐›ผ and ๐œ‡ ๐‘Œ ๐›ผ be strong for each ๐›ผ โˆˆ ฮฆ . If the product multifunction โˆ ๐‘‹ ๐น โˆถ ๐›ผ โ†’ โˆ ๐‘Œ ๐›ผ is upper almost ๐›ฝ ( ๐œ‡ โˆ ๐‘‹ ๐›ผ , ๐œ‡ โˆ ๐‘Œ ๐›ผ ) -continuous, then ๐น ๐›ผ โˆถ ๐‘‹ ๐›ผ โ†’ ๐‘Œ ๐›ผ is upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ ๐›ผ , ๐œ‡ ๐‘Œ ๐›ผ ) -continuous for each ๐›ผ โˆˆ ฮฆ .

Proof . Let ๐›พ be an arbitrary fixed index and ๐‘‰ ๐›พ any ๐œ‡ ๐‘Œ ๐›พ ๐‘Ÿ -open set of ๐‘Œ ๐›พ . Then โˆ ๐‘Œ ๐’ฑ = ๐›ผ ร— ๐‘‰ ๐›พ is ๐œ‡ โˆ ๐‘Œ ๐›ผ ๐‘Ÿ -open in โˆ ๐‘Œ ๐›ผ , where ๐›พ โˆˆ ฮฆ and ๐›ผ โ‰  ๐›พ . Since ๐น is upper almost ๐›ฝ ( ๐œ‡ โˆ ๐‘‹ ๐›ผ , ๐œ‡ โˆ ๐‘Œ ๐›ผ ) -continuous, by Theorem 4.6โ€‰โ€‰ ๐น + โˆ ๐‘‹ ( ๐’ฑ ) = ๐›ผ ร— ๐น + ๐›พ ( ๐‘‰ ๐›พ ) is ๐œ‡ โˆ ๐‘‹ ๐›ผ - ๐›ฝ -open in โˆ ๐‘‹ ๐›ผ . By Lemma 4.22, ๐น + ๐›พ ( ๐‘‰ ๐›พ ) is ๐œ‡ ๐‘‹ ๐›พ - ๐›ฝ -open in ๐‘‹ ๐›พ and hence ๐น ๐›พ is upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ ๐›พ , ๐œ‡ ๐‘Œ ๐›พ ) -continuous for each ๐›พ โˆˆ ฮฆ .

Theorem 4.24. Let ๐œ‡ ๐‘‹ ๐›ผ and ๐œ‡ ๐‘Œ ๐›ผ be strong for each ๐›ผ โˆˆ ฮฆ . If the product multifunction โˆ ๐‘‹ ๐น โˆถ ๐›ผ โ†’ โˆ ๐‘Œ ๐›ผ is lower almost ๐›ฝ ( ๐œ‡ โˆ ๐‘‹ ๐›ผ , ๐œ‡ โˆ ๐‘Œ ๐›ผ ) -continuous, then ๐น ๐›ผ โˆถ ๐‘‹ ๐›ผ โ†’ ๐‘Œ ๐›ผ is lower almost ๐›ฝ ( ๐œ‡ ๐‘‹ ๐›ผ , ๐œ‡ ๐‘Œ ๐›ผ ) -continuous for each ๐›ผ โˆˆ ฮฆ .

Proof. The proof is similar to that of Theorem 4.23 and is thus omitted.

Definition 4.25. The ๐œ‡ ๐‘‹ - ๐›ฝ -frontier of a subset ๐ด of a generalized topological space ( ๐‘‹ , ๐œ‡ ๐‘‹ ) , denoted by ๐‘“ ๐‘Ÿ ๐›ฝ ๐‘‹ , is defined by ๐‘“ ๐‘Ÿ ๐›ฝ ๐‘‹ ( ๐ด ) = ๐‘ ๐›ฝ ๐‘‹ ( ๐ด ) โˆฉ ๐‘ ๐›ฝ ๐‘‹ ( ๐‘‹ โˆ’ ๐ด ) = ๐‘ ๐›ฝ ๐‘‹ ( ๐ด ) โˆ’ ๐‘– ๐›ฝ ๐‘‹ ( ๐ด ) .

Theorem 4.26. A multifunction ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ is not upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous (lower almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous) at ๐‘ฅ โˆˆ ๐‘‹ if and only if ๐‘ฅ is in the union of the ๐œ‡ ๐‘‹ - ๐›ฝ -frontier of the upper (lower) inverse images of ๐œ‡ ๐‘‹ ๐‘Ÿ -open sets containing (meeting) ๐น ( ๐‘ฅ ) .

Proof. Let ๐‘ฅ be a point of ๐‘‹ at which ๐น is not upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous. Then, there exists a ๐œ‡ ๐‘Œ ๐‘Ÿ -open set ๐‘‰ of ๐‘Œ containing ๐น ( ๐‘ฅ ) such that ๐‘ˆ โˆฉ ( ๐‘‹ โˆ’ ๐น + ( ๐‘‰ ) ) โ‰  โˆ… for every ๐‘ˆ โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐‘ฅ ) . By Lemma 3.2, we have ๐‘ฅ โˆˆ ๐‘ ๐›ฝ ๐‘‹ ( ๐‘‹ โˆ’ ๐น + ( ๐‘‰ ) ) . Since ๐‘ฅ โˆˆ ๐น + ( ๐‘‰ ) , we obtain ๐‘ฅ โˆˆ ๐‘ ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘‰ ) ) and hence ๐‘ฅ โˆˆ ๐‘“ ๐‘Ÿ ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘‰ ) ) .
Conversely, suppose that ๐‘‰ is a ๐œ‡ ๐‘Œ ๐‘Ÿ -open set containing ๐น ( ๐‘ฅ ) such that ๐‘ฅ โˆˆ ๐‘“ ๐‘Ÿ ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘‰ ) ) . If ๐น is upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous at ๐‘ฅ , then there exists ๐‘ˆ โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐‘ฅ ) such that ๐น ( ๐‘ˆ ) โŠ† ๐‘‰ . Therefore, we obtain ๐‘ฅ โˆˆ ๐‘ˆ โŠ† ๐‘– ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘‰ ) ) . This is a contradiction to ๐‘ฅ โˆˆ ๐‘“ ๐‘Ÿ ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘‰ ) ) . Thus ๐น is not upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous at ๐‘ฅ . The case of lower almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous is similarly shown.

Definition 4.27. A subset ๐ด of a generalized topological space ( ๐‘‹ , ๐œ‡ ) is said to be ๐œ‡ ๐‘‹ - ๐›ผ -nearly paracompact if every cover of ๐ด by ๐œ‡ ๐‘‹ -regular open sets of ๐‘‹ is refined by a cover of ๐ด which consists of ๐œ‡ ๐‘‹ -open sets of ๐‘‹ and is locally finite in ๐‘‹ .

Definition 4.28 (see [26]). A space ( ๐‘‹ , ๐œ‡ ๐‘‹ ) is said to be ๐œ‡ ๐‘‹ -Hausdorff if, for any pair of distinct points ๐‘ฅ and ๐‘ฆ of ๐‘‹ , there exist disjoint ๐œ‡ ๐‘‹ -open sets ๐‘ˆ and ๐‘‰ of ๐‘‹ containing ๐‘ฅ and ๐‘ฆ , respectively.

Theorem 4.29. Let ( ๐‘‹ , ๐œ‡ ๐‘‹ ) be a generalized topological space and ( ๐‘Œ , ๐œ‡ ๐‘Œ ) a quasitopological space. If ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ is upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous multifunction such that ๐น ( ๐‘ฅ ) is ๐œ‡ ๐‘Œ - ๐›ผ -nearly paracompact for each ๐‘ฅ โˆˆ ๐‘‹ and ( ๐‘Œ , ๐œ‡ ๐‘Œ ) is ๐œ‡ ๐‘Œ -Hausdorff, then, for each ( ๐‘ฅ , ๐‘ฆ ) โˆˆ ๐‘‹ ร— ๐‘Œ โˆ’ ๐บ ( ๐น ) , there exist ๐‘ˆ โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐‘ฅ ) and a ๐œ‡ ๐‘Œ -open set ๐‘‰ containing ๐‘ฆ such that [ ๐‘ˆ ร— ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ] โˆฉ ๐บ ( ๐น ) = โˆ… .

Proof. Let ( ๐‘ฅ , ๐‘ฆ ) โˆˆ ๐‘‹ ร— ๐‘Œ โˆ’ ๐บ ( ๐น ) ; then ๐‘ฆ โˆˆ ๐‘Œ โˆ’ ๐น ( ๐‘ฅ ) . Since ( ๐‘Œ , ๐œ‡ ๐‘Œ ) is ๐œ‡ ๐‘Œ -Hausdorff, for each ๐‘ง โˆˆ ๐น ( ๐‘ฅ ) there exist ๐œ‡ ๐‘Œ -open sets ๐‘‰ ( ๐‘ง ) and ๐‘Š ( ๐‘ฆ ) containing ๐‘ง and ๐‘ฆ , respectively, such that ๐‘‰ ( ๐‘ง ) โˆฉ ๐‘Š ( ๐‘ฆ ) = โˆ… ; hence ๐‘– ๐œ‡ ( ๐‘ ๐œ‡ ( ๐‘‰ ( ๐‘ง ) ) ) โˆฉ ๐‘Š ( ๐‘ฆ ) = โˆ… . The family ๐’ฑ = { ๐‘– ๐œ‡ ( ๐‘ ๐œ‡ ( ๐‘‰ ( ๐‘ง ) ) ) โˆถ ๐‘ง โˆˆ ๐น ( ๐‘ฅ ) } is a cover of ๐น ( ๐‘ฅ ) by ๐œ‡ ๐‘Œ -regular open sets of ๐‘Œ and ๐น ( ๐‘ฅ ) is ๐œ‡ ๐‘Œ - ๐›ผ -nearly paracompact. There exists a locally finite ๐œ‡ ๐‘Œ -open refinement โ„‹ = { ๐ป ๐›พ โˆถ ๐›พ โˆˆ ฮ“ } of ๐’ฑ such that ๐น ( ๐‘ฅ ) โŠ† โˆช { ๐ป ๐›พ โˆถ ๐›พ โˆˆ ฮ“ } . Since โ„‹ is locally finite, there exists a ๐œ‡ ๐‘Œ -open neighbourhood ๐‘Š 0 of ๐‘Œ and a finite subset ฮ“ 0 of ฮ“ such that ๐‘Š 0 โˆฉ ๐ป ๐›พ = โˆ… for every ๐›พ โˆˆ ฮ“ โˆ’ ฮ“ 0 . For each ๐›พ โˆˆ ฮ“ 0 , there exists ๐‘ง ( ๐›พ ) โˆˆ ๐น ( ๐‘ฅ ) such that ๐ป ๐›พ โŠ† ๐‘‰ ( ๐‘ง ( ๐›พ ) ) . Now, put โ„ณ = ๐‘Š 0 โˆฉ [ โˆฉ { ๐‘Š ( ๐‘ง ( ๐›พ ) ) โˆถ ๐›พ โˆˆ ฮ“ 0 } ] and ๐’ฉ = โˆช { ๐ป ๐›พ โˆถ ๐›พ โˆˆ ฮ“ } . Then โ„ณ is a ๐œ‡ ๐‘Œ -open neighbourhood of ๐‘ฆ , ๐’ฉ is ๐œ‡ ๐‘Œ -open in ๐‘Œ , and โ„ณ โˆฉ ๐’ฉ = โˆ… . Therefore, we obtain ๐น ( ๐‘ฅ ) โŠ† ๐’ฉ and ๐‘ ๐œ‡ ๐‘Œ ( โ„ณ ) โˆฉ ๐’ฉ = โˆ… and hence ๐น ( ๐‘ฅ ) โŠ† ๐‘Œ โˆ’ ๐‘ ๐œ‡ ๐‘Œ ( โ„ณ ) . Since โ„ณ is ๐œ‡ ๐‘Œ -open, ๐‘Œ โˆ’ ๐‘ ๐œ‡ ๐‘Œ ( โ„ณ ) is ๐œ‡ ๐‘Œ -regular open in ๐‘Œ . Since ๐น is upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous, by Theorem 4.6, there exists ๐‘ˆ โˆˆ ๐›ฝ ( ๐œ‡ , ๐‘ฅ ) such that ๐น ( ๐‘ˆ ) โŠ† ๐‘Œ โˆ’ ๐‘ ๐œ‡ ๐‘Œ ( โ„ณ ) , hence ๐น ( ๐‘ˆ ) โˆฉ ๐‘ ๐œ‡ ๐‘Œ ( โ„ณ ) = โˆ… . Therefore, we obtain [ ๐‘ˆ ร— ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ] โˆฉ ๐บ ( ๐น ) = โˆ… .

Corollary 4.30. Let ( ๐‘‹ , ๐œ‡ ๐‘‹ ) be a generalized topological space and ( ๐‘Œ , ๐œ‡ ๐‘Œ ) a quasitopological space. If ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ is upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous multifunction such that ๐น ( ๐‘ฅ ) is ๐œ‡ -compact for each ๐‘ฅ โˆˆ ๐‘‹ and ( ๐‘Œ , ๐œ‡ ๐‘Œ ) is ๐œ‡ ๐‘Œ -Hausdorff, then for each ( ๐‘ฅ , ๐‘ฆ ) โˆˆ ๐‘‹ ร— ๐‘Œ โˆ’ ๐บ ( ๐น ) , there exist ๐‘ˆ โˆˆ ๐›ฝ ( ๐œ‡ , ๐‘ฅ ) and a ๐œ‡ -open set ๐‘‰ containing ๐‘ฆ such that [ ๐‘ˆ ร— ๐‘ ๐œ‡ ( ๐‘‰ ) ] โˆฉ ๐บ ( ๐น ) = โˆ… .

Corollary 4.31. Let ( ๐‘‹ , ๐œ‡ ๐‘‹ ) be a generalized topological space and ( ๐‘Œ , ๐œ‡ ๐‘Œ ) a quasitopological space. If ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ is upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous such that ๐น ( ๐‘ฅ ) is ๐œ‡ ๐‘‹ - ๐›ผ -nearly paracompact for each ๐‘ฅ โˆˆ ๐‘‹ and ( ๐‘Œ , ๐œ‡ ๐‘Œ ) is ๐œ‡ ๐‘Œ -Hausdorff, then ๐บ ( ๐น ) is ๐œ‡ ๐‘‹ ร— ๐‘Œ - ๐›ฝ -closed in ๐‘‹ ร— ๐‘Œ .

Proof. By Theorem 4.29, for each ( ๐‘ฅ , ๐‘ฆ ) โˆˆ ๐‘‹ ร— ๐‘Œ โˆ’ ๐บ ( ๐น ) , there exist ๐‘ˆ โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐‘ฅ ) and a ๐œ‡ ๐‘Œ -open set ๐‘‰ containing ๐‘ฆ such that [ ๐‘ˆ ร— ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ] โˆฉ ๐บ ( ๐น ) = โˆ… . Since ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) is ๐œ‡ ๐‘Œ -semiopen, it is ๐œ‡ ๐‘Œ - ๐›ฝ -open and hence ๐‘ˆ ร— ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) is a ๐œ‡ ๐‘‹ ร— ๐‘Œ - ๐›ฝ -open set of ๐‘‹ ร— ๐‘Œ containing ( ๐‘ฅ , ๐‘ฆ ) . Therefore, ๐บ ( ๐น ) is ๐œ‡ ๐‘‹ ร— ๐‘Œ - ๐›ฝ -closed in ๐‘‹ ร— ๐‘Œ .

5. Upper and Lower Weakly ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -Continuous Multifunctions

Definition 5.1. Let ( ๐‘‹ , ๐œ‡ ๐‘‹ ) and ( ๐‘‹ , ๐œ‡ ๐‘Œ ) be generalized topological spaces. A multifunction ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ is said to be(1)upper weakly ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous at a point ๐‘ฅ โˆˆ ๐‘‹ if, for each ๐œ‡ ๐‘Œ -open set ๐‘‰ of containing ๐น ( ๐‘ฅ ) , there exists ๐‘ˆ โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐‘ฅ ) such that ๐น ( ๐‘ˆ ) โŠ† ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ,(2)lower weakly ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous at a point ๐‘ฅ โˆˆ ๐‘‹ if, for each ๐œ‡ ๐‘Œ -open set ๐‘‰ of ๐‘Œ such that ๐น ( ๐‘ฅ ) โˆฉ ๐‘‰ โ‰  โˆ… , there exists ๐‘ˆ โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐‘ฅ ) such that ๐น ( ๐‘ง ) โˆฉ ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) โ‰  โˆ… for every ๐‘ง โˆˆ ๐‘ˆ ,(3)upper weakly (resp. lower weakly) ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous if ๐น has this property at each point of ๐‘‹ .

Remark 5.2. For a multifunction ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ , the following implication holds: upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous โ‡’ upper weakly ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous.
The following example shows that this implication is not reversible.

Example 5.3. Let ๐‘‹ = { 1 , 2 , 3 , 4 } and ๐‘Œ = { ๐‘Ž , ๐‘ , ๐‘ , ๐‘‘ } . Define a generalized topology ๐œ‡ ๐‘‹ = { โˆ… , { 4 } , { 1 , 2 , 3 } , ๐‘‹ } on ๐‘‹ and a generalized topology ๐œ‡ ๐‘Œ = { โˆ… , { ๐‘‘ } { ๐‘Ž , ๐‘ } , { ๐‘Ž , ๐‘ , ๐‘‘ } , { ๐‘ , ๐‘ , ๐‘‘ } , ๐‘Œ } on ๐‘Œ . Define ๐น โˆถ ( ๐‘‹ , ๐œ‡ ๐‘‹ ) โ†’ ( ๐‘Œ , ๐œ‡ ๐‘Œ ) as follows: ๐น ( 1 ) = { ๐‘Ž } , ๐น ( 2 ) = { ๐‘ } , ๐น ( 3 ) = { ๐‘ } , and ๐น ( 4 ) = { ๐‘‘ } . Then ๐น is upper weakly ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous but it is not upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous.

Theorem 5.4. Let ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ be a multifunction. Then ๐น is upper weakly ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous at a point ๐‘ฅ โˆˆ ๐‘‹ if and only if ๐‘ฅ โˆˆ ๐‘– ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) ) for every ๐œ‡ ๐‘Œ -open set ๐‘‰ of ๐‘Œ containing ๐น ( ๐‘ฅ ) .

Proof. Suppose that ๐น is upper weakly ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous at a point ๐‘ฅ โˆˆ ๐‘‹ . Let ๐‘‰ be any ๐œ‡ ๐‘Œ -open set of ๐‘Œ containing ๐น ( ๐‘ฅ ) . There exists ๐‘ˆ โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ ) containing ๐‘ฅ such that ๐น ( ๐‘ˆ ) โŠ† ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) . Thus ๐‘ฅ โˆˆ ๐‘ˆ โŠ† ๐น + ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) . This implies that ๐‘ฅ โˆˆ ๐‘– ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) ) .
Conversely, suppose that ๐‘ฅ โˆˆ ๐‘– ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) ) for every ๐œ‡ ๐‘Œ -open set ๐‘‰ of ๐‘Œ containing ๐น ( ๐‘ฅ ) . Let ๐‘ฅ โˆˆ ๐‘‹ , and let ๐‘‰ be any ๐œ‡ ๐‘Œ -open set of ๐‘Œ containing ๐น ( ๐‘ฅ ) . Then ๐‘ฅ โˆˆ ๐‘– ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) ) . There exists ๐‘ˆ โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ ) containing ๐‘ฅ such that ๐‘ˆ โŠ† ๐น + ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) ; hence ๐น ( ๐‘ˆ ) โŠ† ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) . This implies that ๐น is upper weakly ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous at a point ๐‘ฅ .

Theorem 5.5. Let ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ be a multifunction. Then ๐น is upper weakly ๐›ผ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous at a point ๐‘ฅ โˆˆ ๐‘‹ if and only if ๐‘ฅ โˆˆ ๐‘– ๐›ฝ ๐‘‹ ( ๐น โˆ’ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) ) for every ๐œ‡ ๐‘Œ -open set ๐‘‰ of ๐‘Œ such that ๐น ( ๐‘ฅ ) โˆฉ ๐‘‰ โ‰  โˆ… .

Proof. The proof is similar to that of Theorem 5.4.

Theorem 5.6. The following are equivalent for a multifunction ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ :(1) ๐น is upper weakly ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous,(2) ๐น + ( ๐‘‰ ) โŠ† ๐‘ ๐œ‡ ๐‘‹ ( ๐‘– ๐œ‡ ๐‘‹ ( ๐‘ ๐œ‡ ๐‘‹ ( ๐น + ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) ) ) ) for every ๐œ‡ ๐‘Œ -open set ๐‘‰ of ๐‘Œ ,(3) ๐‘– ๐œ‡ ๐‘‹ ( ๐‘ ๐œ‡ ๐‘‹ ( ๐‘– ๐œ‡ ๐‘‹ ( ๐น โˆ’ ( ๐‘– ๐œ‡ ๐‘Œ ( ๐‘€ ) ) ) ) ) โŠ† ๐น โˆ’ ( ๐‘€ ) for every ๐œ‡ ๐‘Œ -closed set ๐‘€ of ๐‘Œ ,(4) ๐‘ ๐›ฝ ๐‘‹ ( ๐น โˆ’ ( ๐‘– ๐œ‡ ๐‘Œ ( ๐‘€ ) ) ) โŠ† ๐น โˆ’ ( ๐‘€ ) for every ๐œ‡ ๐‘Œ -closed set ๐‘€ of ๐‘Œ ,(5) ๐‘ ๐›ฝ ๐‘‹ ( ๐น โˆ’ ( ๐‘– ๐œ‡ ๐‘Œ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐ด ) ) ) ) โŠ† ๐น โˆ’ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐ด ) ) for every subset ๐ด of ๐‘Œ ,(6) ๐น + ( ๐‘– ๐œ‡ ๐‘Œ ( ๐ด ) ) โŠ† ๐‘– ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘– ๐œ‡ ๐‘Œ ( ๐ด ) ) ) ) for every subset ๐ด of ๐‘Œ ,(7) ๐น + ( ๐‘‰ ) โŠ† ๐‘– ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) ) for every ๐œ‡ ๐‘Œ -open set ๐‘‰ of ๐‘Œ ,(8) ๐‘ ๐›ฝ ๐‘‹ ( ๐น โˆ’ ( ๐‘– ๐œ‡ ๐‘Œ ( ๐‘€ ) ) ) โŠ† ๐น โˆ’ ( ๐‘€ ) for every ๐œ‡ ๐‘Œ ๐‘Ÿ -closed set ๐‘€ of ๐‘Œ ,(9) ๐‘ ๐›ฝ ๐‘‹ ( ๐น โˆ’ ( ๐‘‰ ) ) โŠ† ๐น โˆ’ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) for every ๐œ‡ ๐‘Œ -open set ๐‘‰ of ๐‘Œ .

Proof. ( 1 ) โ‡’ ( 2 ) Let ๐‘‰ be any ๐œ‡ ๐‘Œ -open set of ๐‘Œ and ๐‘ฅ โˆˆ ๐น + ( ๐‘‰ ) . Then ๐น ( ๐‘ฅ ) โŠ† ๐‘‰ and there exists ๐‘ˆ โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐‘ฅ ) such that ๐น ( ๐‘ˆ ) โŠ† ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) . Therefore, we have ๐‘ฅ โˆˆ ๐‘ˆ โŠ† ๐น + ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) . Since ๐‘ˆ โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐‘ฅ ) , we have ๐‘ฅ โˆˆ ๐‘ˆ โŠ† ๐‘ ๐œ‡ ๐‘‹ ( ๐‘– ๐œ‡ ๐‘‹ ( ๐‘ ๐œ‡ ๐‘‹ ( ๐น + ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) ) ) ) .
( 2 ) โ‡’ ( 3 ) Let ๐‘€ be any ๐œ‡ ๐‘Œ -closed set of ๐‘Œ . Then ๐‘Œ โˆ’ ๐‘€ is a ๐œ‡ ๐‘Œ -open set in ๐‘Œ . By (3), we have ๐น + ( ๐‘Œ โˆ’ ๐‘€ ) โŠ† ๐‘ ๐œ‡ ๐‘‹ ( ๐‘– ๐œ‡ ๐‘‹ ( ๐‘ ๐œ‡ ๐‘‹ ( ๐น + ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘Œ โˆ’ ๐‘€ ) ) ) ) ) . By the straightforward calculations, we obtain ๐‘– ๐œ‡ ๐‘‹ ( ๐‘ ๐œ‡ ๐‘‹ ( ๐‘– ๐œ‡ ๐‘‹ ( ๐น โˆ’ ( ๐‘– ๐œ‡ ๐‘Œ ( ๐‘€ ) ) ) ) ) โŠ† ๐น โˆ’ ( ๐‘€ ) .
( 3 ) โ‡’ ( 4 ) Let ๐‘€ be any ๐œ‡ ๐‘Œ -closed set of ๐‘Œ . Then, we have ๐‘– ๐œ‡ ๐‘‹ ( ๐‘ ๐œ‡ ๐‘‹ ( ๐‘– ๐œ‡ ๐‘‹ ( ๐น โˆ’ ( ๐‘– ๐œ‡ ๐‘Œ ( ๐‘€ ) ) ) ) ) โŠ† ๐น โˆ’ ( ๐‘€ ) โ€‰โ€‰and hence ๐‘ ๐›ฝ ๐‘‹ ( ๐น โˆ’ ( ๐‘– ๐œ‡ ๐‘Œ ( ๐‘€ ) ) ) โŠ† ๐น โˆ’ ( ๐‘€ ) .
( 4 ) โ‡’ ( 5 ) Let ๐ด be any subset of ๐‘Œ . Then, ๐‘ ๐œ‡ ๐‘Œ ( ๐ด ) is ๐œ‡ ๐‘Œ -closed in ๐‘Œ . Therefore, by (5) we have ๐‘ ๐›ฝ ๐‘‹ ( ๐น โˆ’ ( ๐‘– ๐œ‡ ๐‘Œ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐ด ) ) ) ) โŠ† ๐น โˆ’ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐ด ) ) .
( 5 ) โ‡’ ( 6 ) Let ๐ด be any subset of ๐‘Œ . Then, we obtain ๐‘‹ โˆ’ ๐น + ( ๐‘– ๐œ‡ ๐‘Œ ( ๐ด ) ) = ๐น โˆ’ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘Œ โˆ’ ๐ด ) ) โŠ‡ ๐‘ ๐›ฝ ๐‘‹ ( ๐น โˆ’ ( ๐‘– ๐œ‡ ๐‘Œ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘Œ โˆ’ ๐ด ) ) ) ) = ๐‘ ๐›ฝ ๐‘‹ ( ๐น โˆ’ ( ๐‘Œ โˆ’ ๐‘ ๐œ‡ ๐‘Œ ( ๐‘– ๐œ‡ ๐‘Œ ( ๐ด ) ) ) ) = ๐‘ ๐›ฝ ๐‘‹ ๐น ( ๐‘‹ โˆ’ + ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘– ๐œ‡ ๐‘Œ ( ๐ด ) ) ) ) = ๐‘‹ โˆ’ ๐‘– ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘– ๐œ‡ ๐‘Œ ( ๐ด ) ) ) ) . Therefore, we obtain ๐น + ( ๐‘– ๐œ‡ ๐‘Œ ( ๐ด ) ) โŠ† ๐‘– ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘– ๐œ‡ ๐‘Œ ( ๐ต ) ) ) ) .
( 6 ) โ‡’ ( 7 ) The proof is obvious.
( 7 ) โ‡’ ( 1 ) Let ๐‘ฅ โˆˆ ๐‘‹ , and let ๐‘‰ be any ๐œ‡ ๐‘Œ -open set of ๐‘Œ containing ๐น ( ๐‘ฅ ) . Then, we obtain ๐‘ฅ โˆˆ ๐‘– ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) ) and hence ๐น is upper weakly ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous at ๐‘ฅ by Theorem 5.4.
( 4 ) โ‡’ ( 8 ) The proof is obvious.
( 8 ) โ‡’ ( 9 ) Let ๐‘‰ be any ๐œ‡ ๐‘Œ -open set of ๐‘Œ . Then ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) is ๐œ‡ ๐‘Œ -regular closed in ๐‘Œ and hence we have ๐‘ ๐›ฝ ๐‘‹ ( ๐น โˆ’ ( ๐‘‰ ) ) โŠ† ๐‘ ๐›ฝ ๐‘‹ ( ๐น โˆ’ ( ๐‘– ๐œ‡ ๐‘Œ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) ) ) โŠ† ๐น โˆ’ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) .
( 9 ) โ‡’ ( 7 ) Let ๐‘‰ be any ๐œ‡ ๐‘Œ -open set of ๐‘Œ . Then we have ๐‘‹ โˆ’ ๐‘– ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) ) = ๐‘ ๐œ‡ ๐‘‹ ( ๐‘‹ โˆ’ ๐น + ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) ) = ๐‘ ๐œ‡ ๐‘‹ ( ๐น โˆ’ ( ๐‘Œ โˆ’ ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) ) โŠ† ๐น โˆ’ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘Œ โˆ’ ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) ) = ๐‘‹ โˆ’ ๐น + ( ๐‘– ๐œ‡ ๐‘Œ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) ) . Therefore, we obtain ๐น + ( ๐‘‰ ) โŠ† ๐น + ( ๐‘– ๐œ‡ ๐‘Œ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) ) โŠ† ๐‘– ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) ) .

Theorem 5.7. The following are equivalent for a multifunction ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ :(1) ๐น is lower weakly ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous,(2) ๐น โˆ’ ( ๐‘‰ ) โŠ† ๐‘ ๐œ‡ ๐‘‹ ( ๐‘– ๐œ‡ ๐‘‹ ( ๐‘ ๐œ‡ ๐‘‹ ( ๐น โˆ’ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) ) ) ) for every ๐œ‡ ๐‘Œ -open set ๐‘‰ of ๐‘Œ ,(3) ๐‘– ๐œ‡ ๐‘‹ ( ๐‘ ๐œ‡ ๐‘‹ ( ๐‘– ๐œ‡ ๐‘‹ ( ๐น + ( ๐‘– ๐œ‡ ๐‘Œ ( ๐‘€ ) ) ) ) ) โŠ† ๐น + ( ๐‘€ ) for every ๐œ‡ ๐‘Œ -closed set ๐‘€ of ๐‘Œ ,(4) ๐‘ ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘– ๐œ‡ ๐‘Œ ( ๐‘€ ) ) ) โŠ† ๐น + ( ๐‘€ ) for every ๐œ‡ ๐‘Œ -closed set ๐‘€ of ๐‘Œ ,(5) ๐‘ ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘– ๐œ‡ ๐‘Œ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐ด ) ) ) ) โŠ† ๐น + ( ๐‘ ๐œ‡ ๐‘Œ ( ๐ด ) ) for every subset ๐ด of ๐‘Œ ,(6) ๐น โˆ’ ( ๐‘– ๐œ‡ ๐‘Œ ( ๐ด ) ) โŠ† ๐‘– ๐›ฝ ๐‘‹ ( ๐น โˆ’ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘– ๐œ‡ ๐‘Œ ( ๐ด ) ) ) ) for every subset ๐ด of ๐‘Œ ,(7) ๐น โˆ’ ( ๐‘‰ ) โŠ† ๐‘– ๐›ฝ ๐‘‹ ( ๐น โˆ’ ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) ) for every ๐œ‡ ๐‘Œ -open set ๐‘‰ of ๐‘Œ ,(8) ๐‘ ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘– ๐œ‡ ๐‘Œ ( ๐‘€ ) ) ) โŠ† ๐น + ( ๐‘€ ) for every ๐œ‡ ๐‘Œ ๐‘Ÿ -closed set ๐‘€ of ๐‘Œ ,(9) ๐‘ ๐›ฝ ๐‘‹ ( ๐น + ( ๐‘‰ ) ) โŠ† ๐น + ( ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) ) for every ๐œ‡ ๐‘Œ -open set ๐‘‰ of ๐‘Œ .

Proof. The proof is similar to that of Theorem 5.6.

Theorem 5.8. Let ( ๐‘‹ , ๐œ‡ ๐‘‹ ) be a generalized topological space and ( ๐‘Œ , ๐œ‡ ๐‘Œ ) a quasitopological space. For a multifunction ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ such that ๐น ( ๐‘ฅ ) is a ๐œ‡ ๐‘Œ - ๐›ผ -regular ๐œ‡ ๐‘Œ - ๐›ผ -paracompact set for each ๐‘ฅ โˆˆ ๐‘‹ , the following are equivalent:(1) ๐น is upper weakly ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous,(2) ๐น is upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous,(3) ๐น is upper ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous.

Proof. ( 1 ) โ‡’ ( 3 ) Suppose that ๐น is upper weakly ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous. Let ๐‘ฅ โˆˆ ๐‘‹ , and let ๐บ be a ๐œ‡ ๐‘Œ -open set of ๐‘Œ such that ๐น ( ๐‘ฅ ) โŠ† ๐บ . Since ๐น ( ๐‘ฅ ) is ๐œ‡ ๐‘Œ - ๐›ผ -regular ๐œ‡ ๐‘Œ - ๐›ผ -paracompact, by Lemma 4.13 there exists a ๐œ‡ ๐‘Œ -open set ๐‘‰ such that ๐น ( ๐‘ฅ ) โŠ† ๐‘‰ โŠ† ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) โŠ† ๐บ . Since ๐น is upper weakly ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous at ๐‘ฅ and ๐น ( ๐‘ฅ ) โŠ† ๐‘‰ , there exists ๐‘ˆ โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐‘ฅ ) such that ๐น ( ๐‘ˆ ) โŠ† ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) and hence ๐น ( ๐‘ˆ ) โŠ† ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) โŠ† ๐บ . Therefore, ๐น is upper ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous.

Definition 5.9. A generalized topological space ( ๐‘‹ , ๐œ‡ ๐‘‹ ) is said to be ๐œ‡ ๐‘‹ -compact if every cover of ๐‘‹ by ๐œ‡ ๐‘‹ -open sets has a finite subcover.

A subset ๐‘€ of a generalized topological space ( ๐‘‹ , ๐œ‡ ๐‘‹ ) is said to be ๐œ‡ ๐‘‹ -compact if every cover of ๐‘€ by ๐œ‡ ๐‘‹ -open sets has a finite subcover.

Definition 5.10. A space ( ๐‘‹ , ๐œ‡ ๐‘‹ ) is said to be ๐œ‡ ๐‘‹ -regular if for each ๐œ‡ ๐‘‹ -closed set ๐น and each point ๐‘ฅ โˆ‰ ๐น , there exist disjoint ๐œ‡ ๐‘‹ -open sets ๐‘ˆ and ๐‘‰ such that ๐‘ฅ โˆˆ ๐‘ˆ and ๐น โŠ† ๐‘‰ .

Corollary 5.11. Let ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ be a multifunction such that ๐น ( ๐‘ฅ ) is ๐œ‡ ๐‘‹ -compact for each ๐‘ฅ โˆˆ ๐‘‹ and ( ๐‘Œ , ๐œ‡ ๐‘Œ ) is ๐œ‡ ๐‘Œ -regular. Then, the following are equivalent:(1) ๐น is upper weakly ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous,(2) ๐น is upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous,(3) ๐น is upper ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous.

Lemma 5.12. If ๐ด is a ๐œ‡ ๐‘‹ - ๐›ผ -regular set of ๐‘‹ , then, for every ๐œ‡ ๐‘‹ -open set ๐‘ˆ which intersects ๐ด , there exists a ๐œ‡ ๐‘‹ -open set ๐‘‰ such that ๐ด โˆฉ ๐‘‰ โ‰  โˆ… and ๐‘ ๐œ‡ ๐‘‹ ( ๐‘‰ ) โŠ† ๐‘ˆ .

Theorem 5.13. For a multifunction ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ such that ๐น ( ๐‘ฅ ) is a ๐œ‡ ๐‘Œ - ๐›ผ -regular set of ๐‘Œ for each ๐‘ฅ โˆˆ ๐‘‹ , the following are equivalent:(1) ๐น is lower weakly ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous,(2) ๐น is lower almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous,(3) ๐น is lower ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous.

Proof. ( 1 ) โ‡’ ( 3 ) Suppose that ๐น is lower weakly ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous. Let ๐‘ฅ โˆˆ ๐‘‹ , and let ๐บ be a ๐œ‡ ๐‘Œ -open set of ๐‘Œ such that ๐น ( ๐‘ฅ ) โˆฉ ๐บ โ‰  โˆ… . Since ๐น ( ๐‘ฅ ) is ๐œ‡ ๐‘‹ - ๐›ผ -regular, by Lemma 5.12 there exists a ๐œ‡ ๐‘Œ -open set ๐‘‰ of ๐‘Œ such that ๐น ( ๐‘ฅ ) โˆฉ ๐‘‰ โ‰  โˆ… and ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) โŠ† ๐บ . Since ๐น is lower weakly ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous at ๐‘ฅ , there exists ๐‘ˆ โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐‘ฅ ) such that ๐น ( ๐‘ข ) โˆฉ ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) โ‰  โˆ… for each ๐‘ข โˆˆ ๐‘ˆ . Since ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) โŠ† ๐บ , we have ๐น ( ๐‘ข ) โˆฉ ๐บ โ‰  โˆ… for each ๐‘ข โˆˆ ๐‘ˆ . Therefore, ๐น is lower ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous.

Definition 5.14. A space ( ๐‘‹ , ๐œ‡ ๐‘‹ ) is said to be ๐œ‡ ๐‘‹ -normal if for every pair of disjoint ๐œ‡ ๐‘‹ -closed sets ๐น and ๐น โ€ฒ , there exist disjoint ๐œ‡ ๐‘‹ -open sets ๐‘ˆ and ๐‘‰ such that ๐น โŠ† ๐‘ˆ and ๐น โ€ฒ โŠ† ๐‘‰ .

Theorem 5.15. Let ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ be a multifunction such that ๐น ( ๐‘ฅ ) is ๐œ‡ ๐‘Œ -closed in ๐‘Œ for each ๐‘ฅ โˆˆ ๐‘‹ and ( ๐‘Œ , ๐œ‡ ๐‘Œ ) is ๐œ‡ ๐‘Œ -normal. Then, the following are equivalent:(1) ๐น is upper weakly ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous,(2) ๐น is upper almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous,(3) ๐น is upper ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous.

Proof. ( 1 ) โ‡’ ( 3 ) : Suppose that ๐น is lower weakly ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous. Let ๐‘ฅ โˆˆ ๐‘‹ , and let ๐บ be a ๐œ‡ ๐‘Œ -open set of ๐‘Œ containing ๐น ( ๐‘ฅ ) . Since ๐น ( ๐‘ฅ ) is ๐œ‡ ๐‘Œ -closed in ๐‘Œ , by the ๐œ‡ ๐‘Œ -normality of ๐‘Œ there exists a ๐œ‡ ๐‘Œ -open set ๐‘‰ of ๐‘Œ such that ๐น ( ๐‘ฅ ) โŠ† ๐‘‰ โŠ† ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) โŠ† ๐บ . Since ๐น is upper weakly ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous, there exists ๐‘ˆ โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐‘ฅ ) such that ๐น ( ๐‘ˆ ) โŠ† ๐‘ ๐œ‡ ๐‘Œ ( ๐‘‰ ) โŠ† ๐บ . This shows that ๐น is upper ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous.

Theorem 5.16. If ๐น โˆถ ๐‘‹ โ†’ ๐‘Œ is lower almost ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous multifunction such that ๐น ( ๐‘ฅ ) is ๐œ‡ ๐‘Œ -semiopen in ๐‘Œ for each ๐‘ฅ โˆˆ ๐‘‹ , then ๐น is lower ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous.

Proof. Let ๐‘ฅ โˆˆ ๐‘‹ , and let ๐‘‰ be a ๐œ‡ ๐‘Œ -open set of ๐‘Œ such that ๐น ( ๐‘ฅ ) โˆฉ ๐‘‰ โ‰  โˆ… . By Theorem 4.7 there exists ๐‘ˆ โˆˆ ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐‘ฅ ) such that ๐น ( ๐‘ข ) โˆฉ ๐‘ ๐œŽ ๐‘Œ ( ๐‘‰ ) โ‰  โˆ… for each ๐‘ข โˆˆ ๐‘ˆ . Since ๐น ( ๐‘ข ) is ๐œ‡ ๐‘Œ -semiopen in ๐‘Œ , ๐น ( ๐‘ข ) โˆฉ ๐‘‰ โ‰  โˆ… for each ๐‘ข โˆˆ ๐‘ˆ and hence ๐น is lower ๐›ฝ ( ๐œ‡ ๐‘‹ , ๐œ‡ ๐‘Œ ) -continuous.

Acknowledgment

This research was financially supported by Mahasarakham University.