Table of Contents
Indian Journal of Materials Science
Volume 2013 (2013), Article ID 684730, 7 pages
http://dx.doi.org/10.1155/2013/684730
Research Article

Preparation and Characterization of R.F. Magnetron Sputtered Mo:ZnO Thin Films

1Department of Science and Humanities, Vignan University, Vadlamudi, Andhra Pradesh 522 213, India
2Postgraduate Department of Physics and Electronics, P.B. Siddhartha College of Arts and Science, Vijayawada, Andhra Pradesh 520 010, India
3Laboratory for Condensed Matter Physics, Satyendra Nath Bose National Centre for Basic Sciences, Salt Lake, Kolkata 700 098, India

Received 17 June 2013; Accepted 31 July 2013

Academic Editors: K. Kalantar-Zadeh and H. Leiste

Copyright © 2013 K. Srinivasarao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Mass, P. Bhattacharya, and R. S. Katiyar, “Effect of high substrate temperature on Al-doped ZnO thin films grown by pulsed laser deposition,” Materials Science and Engineering B, vol. 103, no. 1, pp. 9–15, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. S. S. Lin, J. L. Huang, and P. Šajgalik, “The properties of heavily Al-doped ZnO films before and after annealing in the different atmosphere,” Surface & Coating Technologies, vol. 185, no. 2-3, pp. 254–263, 2004. View at Google Scholar
  3. E. L. Papadopoulou, M. Varda, K. Kouroupis-Agalou et al., “Undoped and Al-doped ZnO films with tuned properties grown by pulsed laser deposition,” Thin Solid Films, vol. 516, no. 22, pp. 8141–8145, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. J.-H. Lee and B.-O. Park, “Transparent conducting ZnO:Al, In and Sn thin films deposited by the sol-gel method,” Thin Solid Films, vol. 426, no. 1-2, pp. 94–99, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. H. K. Kim, S. H. Huh, J. W. Park, J. W. Jeong, and G. H. Lee, “The cluster size dependence of thermal stabilities of both molybdenum and tungsten nanoclusters,” Chemical Physics Letters, vol. 354, no. 1-2, pp. 165–172, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. J. N. Duenow, T. A. Gesset, D. M. Wood, T. M. Barnes, and M. Young, “Transparent conducting zinc oxide thin films doped with aluminum and molybdenum,” Journal of Vacuum Science & Technology, vol. 25, no. 4, p. 955, 2007. View at Publisher · View at Google Scholar
  7. J. Shi, H. Ma, G. Ma, H. Ma, and J. Shen, “Structure and ultrafast carrier dynamics in n-type transparent Mo:ZnO nanocrystalline thin films,” Applied Physics, vol. 92, no. 2, pp. 357–360, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. C. Lin, B. L. Wang, W. T. Yen, C. T. Ha, and C. Peng, “Effect of process conditions on the optoelectronic characteristics of ZnO:Mo thin films prepared by pulsed direct current magnetron sputtering,” Thin Solid Films, vol. 518, no. 17, pp. 4928–4934, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. D. J. Cohen, K. C. Ruthe, and S. A. Barnett, “Transparent conducting Zn1-xMgxO:(Al,In) thin films,” Journal of Applied Physics, vol. 96, no. 1, pp. 459–467, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. K. S. Rao, B. Rajini Kanth, K. Pandurangarao, and P. K. Mukhopadhyay, “Physical investigations on pulsed laser deposited nanocrystalline ZnO thin films,” Applied Physics A, vol. 108, no. 1, pp. 247–254, 2012. View at Publisher · View at Google Scholar
  11. A. Manthiram and J. Gopalakrishnan, “New A2+Mo4+O3 oxides with defect spinel structure,” Materials Research Bulletin, vol. 15, no. 2, pp. 207–211, 1980. View at Google Scholar · View at Scopus
  12. R. Swapna and M. C. Santhosh Kumar, “The role of substrate temperature on the properties of nanocrystalline Mo doped ZnO thin films by spray pyrolysis,” Ceramics International, vol. 38, no. 5, pp. 3875–3883, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. B. D. Cullity, Elements of X-Ray Diffraction, Addison-Wesley, Philippines, 2nd edition, 1977.
  14. S. Maniv, W. D. Westwood, and E. Colombini, “Pressure and angle of incidence effects in reactive planar magnetron sputtered ZnO layers,” Journal of Vacuum Science & Technology, vol. 20, no. 2, pp. 162–170, 1982. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Cebulla, R. Wendt, and K. Ellmer, “Al-doped zinc oxide films deposited by simultaneous rf and dc excitation of a magnetron plasma: relationships between plasma parameters and structural and electrical film properties,” Journal of Applied Physics, vol. 83, no. 2, pp. 1087–1095, 1998. View at Google Scholar · View at Scopus
  16. T. Hanabusa, H. Hosoda, K. Kusaka, and K. Tominaga, “Abnormal residual stress state in ZnO films synthesized by planar magnetron sputtering system with two facing targets,” Thin Solid Films, vol. 343-344, no. 1-2, pp. 164–167, 1999. View at Google Scholar · View at Scopus
  17. J. G. Lu, Z. Z. Ye, Y. J. Zeng et al., “Structural, optical, and electrical properties of (Zn,Al)O films over a wide range of compositions,” Journal of Applied Physics, vol. 100, no. 7, Article ID 073714, 11 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. C. Lin, B. L. Wang, W. T. Yen, and C. H. Shen, “Surface textured molybdenum doped zinc oxide thin films prepared for thin film solar cells using pulsed direct current magnetron sputtering,” Thin Solid Films, vol. 519, no. 16, pp. 5571–5576, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Nunes, E. Fortunato, P. Tonello, F. Braz Fernandes, P. Vilarinho, and R. Martins, “Effect of different dopant elements on the properties of ZnO thin films,” Vacuum, vol. 64, no. 3-4, pp. 281–285, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. D. J. Eaglesham, F. C. Unterwald, and D. C. Jacobson, “Growth morphology and the equilibrium shape: the role of surfactants in Ge/Si island formation,” Physical Review Letters, vol. 70, no. 7, pp. 966–969, 1993. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Green and A. Travlas, “Sodium-tungsten bronze thin films: I. Optical properties of dilute bronzes,” Philosophical Magazine, vol. 51, no. 5, pp. 501–520, 1985. View at Publisher · View at Google Scholar
  22. M. Suchea, S. Christoulakis, M. Katharakis, N. Vidakis, and E. Koudoumas, “Influence of thickness and growth temperature on the optical and electrical properties of ZnO thin films,” Thin Solid Films, vol. 517, no. 15, pp. 4303–4306, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. F. K. Shan, G. X. Liu, W. J. Lee, and B. C. Shin, “Stokes shift, blue shift and red shift of ZnO-based thin films deposited by pulsed-laser deposition,” Journal of Crystal Growth, vol. 291, no. 2, pp. 328–333, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Logothetidis, A. Laskarakis, S. Kassavetis, S. Lousinian, C. Gravalidis, and G. Kiriakidis, “Optical and structural properties of ZnO for transparent electronics,” Thin Solid Films, vol. 516, no. 7, pp. 1345–1349, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Burstein, “Anomalous optical absorption limit in InSb,” Physical Review, vol. 93, no. 3, pp. 632–633, 1954. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Boukhachem, B. Ouni, M. Karyaoui, A. Madani, R. Chtourou, and M. Amlouk, “Structural, opto-thermal and electrical properties of ZnO:Mo sprayed thin films,” Materials Science in Semiconductor Processing, vol. 15, no. 3, pp. 282–292, 2012. View at Publisher · View at Google Scholar · View at Scopus