Table of Contents
International Journal of Microwave Science and Technology
Volume 2012, Article ID 182793, 5 pages
Research Article

Wide Range Temperature Sensors Based on One-Dimensional Photonic Crystal with a Single Defect

1AITTM, Amity University, NOIDA 201303, India
2Department of Physics, Digamber Jain (P.G.) College, Baraut 250611, India
3Department of Physics, Govt. College of Engineering & Technology, Bikaner 334004, India
4Nanophysics Laboratory, Department of Physics, Govt. Dungar College, Bikaner 334001, India
5Director General, IIMT Group of Colleges, Noida 201303, India

Received 21 March 2012; Revised 9 June 2012; Accepted 27 June 2012

Academic Editor: Yeou Song (Brian) Lee

Copyright © 2012 Arun Kumar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Transmission characteristics of one-dimensional photonic crystal structure with a defect have been studied. Transfer matrix method has been employed to find the transmission spectra of the proposed structure. We consider a Si/air multilayer system and refractive index of Si layer has been taken as temperature dependent. As the refractive index of Si layer is a function of temperature of medium, so the central wavelength of the defect mode is a function of temperature. Variation in temperature causes the shifting of defect modes. It is found that the average change or shift in central wavelength of defect modes is 0.064 nm/K. This property can be exploited in the design of a temperature sensor.