Table of Contents
International Journal of Microwave Science and Technology
Volume 2012, Article ID 590153, 9 pages
Research Article

Performance Comparison of UWB Pulse Modulation Schemes under White Gaussian Noise Channels

School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON, Canada K1N 6N5

Received 31 January 2012; Revised 21 June 2012; Accepted 23 June 2012

Academic Editor: Xianming Qing

Copyright © 2012 O. Abedi and M. C. E. Yagoub. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Naanaa and S. Belghith, “Performance enhancement of a time hopping—pulse position modulation ultra-wideband system using guided local search,” IET Journal of Communications, vol. 5, no. 15, pp. 2212–2220, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. Q. Zhu, Z. Jia, and C. Zou, “On the performance of different modulation schemes for UWB systems in a multipath channel,” in Proceedings of the IET International Conference on Wireless, Mobile and Multimedia Networks, pp. 1–4, November 2006.
  3. R. Hidayat and Y. Miyanaga, “IR-UWB pulse position modulation and pulse shape modulation through S-V channel model,” in Proceedings of the 2nd International Conference on Communication Software and Networks (ICCSN '10), pp. 214–217, February 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Al Zaman and N. Islam, “Modulation schemes and pulse shaping in ultra wideband,” in Proceedings of the IEEE Southeast conference, pp. 142–146, April 2008. View at Scopus
  5. C. Ngo and D. Birru, “Analysis of UWB modulation techniques,” in Proceedings of the International Conference on Wireless Networks (ICWN '03), pp. 646–652, June 2003. View at Scopus
  6. M. G. Di Benedetto and G. Giancola, Understanding Ultra Wide Band Radio Fundamentals, Prentice Hall, New York, NY, USA, 2004.
  7. M. Ghavami, L. B. Michael, R. Kohno, and U. W. B. Signals a, Systems in Communication Engineering, John Wiley & Sons, New York, NY, USA, 2nd edition, 2007.
  8. H. Sheng, “On the spectral and power requirements for ultra-wideband transmission,” in Proceedings of the International Conference on Communications (ICC '03), pp. 738–742, May 2003. View at Scopus
  9. L. Ma and T. C. Wang, “Performance analysis and simulations of UWB-PAM communications in AWGN channel,” in Proceedings of the 4th International Conference on Microwave and Millimeter Wave Technology (ICMMT '04), pp. 830–833, August 2004. View at Scopus
  10. Z. Ye, “Power spectral density and in-band interference power of UWB signals at narrowband systems,” in Proceedings of the IEEE International Conference on Communications, pp. 3561–3565, June 2004. View at Scopus
  11. J. Nielsen and S. Zwierzchowski, “Power spectral density of a UWB signal with discrete quantized pulse positions,” Canadian Journal of Electrical and Computer Engineering, vol. 28, no. 3-4, pp. 145–154, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. P. E. McIllree, “Calculation of channel capacity for M-ary digital modulation signal sets,” in Proceedings of the IEEE Singapore International Conference on Networks, pp. 639–643, Singapore, September 1993.
  13. S. S. Mo, “On the power spectral density of UWB signals in IEEE 802.15.3a,” in Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC '04), pp. 999–1003, March 2004.
  14. L. Zhao and A. M. Haimovich, “Capacity of M-ary PPM ultra-wideband communications over AWGN channels,” in Proceedings of the IEEE 54th Vehicular Technology Conference (VTC FALL '01), pp. 1191–1195, October 2001. View at Scopus
  15. R. Pasand, “Capacity of PPM ultra-wideband communications with inter pulse interference,” in Proceedings of the Canadian Conference on Electrical and Computer Engineering, pp. 2355–2358, May 2004. View at Scopus
  16. V. Somayazulu, J. R. Foerster, and S. Roy, “Design challenges for very high data rate UWB systems,” in Proceedings of the 36th Asilomar Conference on Signals Systems and Computers, pp. 717–721, November 2002. View at Scopus