Table of Contents
International Journal of Microwave Science and Technology
Volume 2013 (2013), Article ID 248501, 9 pages
http://dx.doi.org/10.1155/2013/248501
Research Article

Compact Multiband Printed IFA on Electromagnetic Band-Gap Structures Ground Plane for Wireless Applications

Microstrip Department, Electronics Research Institute, ELtahrir Street, Dokki, Giza 12622, Egypt

Received 1 October 2012; Accepted 28 November 2012

Academic Editor: Ramon Gonzalo

Copyright © 2013 Dalia Elsheakh and Esmat Abdallah. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. L. Volakis, C. Chih, and K. Fujimoto, Small Antennas: Miniaturization Techniques and Applications, Mc-Graw Hill, New York, NY, USA, 2010.
  2. M. N. M. Kehn, O. Quevedo-Teruel, and E. Rajo-Iglesias, “Reconfigurable loaded planar inverted-F antenna using varactor diodes,” IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 466–469, 2011. View at Google Scholar
  3. R. A. Bhatti, Y. T. Im, and S. O. Park, “Compact PIFA for mobile terminals supporting multiple cellular and non-cellular standards,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 9, pp. 2534–2540, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. Q. Quevedo-Teruel, E. Pucci, and E. Rajo-Iglesias, “Compact loaded PIFA for multifrequency applications,” IEEE Transactions on Antennas and Propagation, vol. 58, no. 3, pp. 656–664, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. K. L. Wong, Compact and Broadband Microstrip Antennas, Wiley-Inter Science, NewYork, NY, USA, 2002.
  6. S. Chaimool, K. L. Chung, and P. Akkaraekthalin, “Bandwidth and gain enhancement of microstrip patch antennas using reflective metasurface,” IEICE Transactions on Communications B, vol. E93, no. 10, pp. 2496–2503, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Sievenpiper, L. Zhang, R. F. Broas, N. G. Alexöpolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 11, pp. 2059–2074, 1999. View at Google Scholar · View at Scopus
  8. F. Yang and Y. Rahmat-Samii, Electromagnetic Band-Gap Structures in Antenna Engineering: The Cambridge RF and Microwave Engineering Series, Cambridge University Press, Cambridge, Mass, USA, 2008.
  9. F. Yang and Y. Rahmat-Samii, “Curl antennas over electromagnetic band-gap surface: a low profiled design for CP applications,” in Proceedings of the IEEE Antennas and Propagation. Society International Symposium, vol. 3, pp. 372–375, July 2001. View at Scopus
  10. J. Y. Park, C. C. Chang, Y. Qian, and T. Itoh, “An improved low-profile cavity-backed slot antenna loaded with 2D UC-PBG reflector,” in Proceedings of the IEEE Antennas and Propagation. Society International Symposium, pp. 194–197, July 2001. View at Scopus
  11. F. Yang, V. Demir, D. A. Elsherbeni, A. Z. Elsherbeni, and A. A. Eldek, “Planar dipole antennas near the edge of an EBG ground plane for WLAN applications,” in Proceedings of the IEEE Antennas and Propagation Society International Symposium, vol. 1A, pp. 750–753, July 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Nashaat, H. A. Elsadek, E. A. Abdallah, M. F. Iskander, and H. M. Elhenawy, “Ultrawide bandwidth 2 × 2 microstrip patch array antenna using electromagnetic band-gap structure (EBG),” IEEE Transactions on Antennas and Propagation, vol. 59, no. 5, pp. 1528–1534, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Yang and Y. Rahmat-Samii, “Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications,” IEEE Transactions on Antennas and Propagation, vol. 51, no. 10, pp. 2936–2946, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. S. D. Assimonis, V. Yioultsis, and C. S. Antonopoulos, “Computational investigation and design of planar EBG structures for coupling reduction in antenna applications,” IEEE Transactions on Magnetics, vol. 48, pp. 771–774, 2012. View at Google Scholar
  15. M. Y. Fan, R. Feng, Z. H. Hu, X. X. Zhang, and Q. Hao, “Advance in 2D-EBG research,” Journal of Infrared Millimeter Waves, vol. 22, pp. 883–887, 2003. View at Google Scholar
  16. M. F. Abedin, M. Z. Azad, and M. Ali, “Wideband smaller unit-cell planar EBG structures and their application,” IEEE Transactions on Antennas and Propagation, vol. 56, no. 3, pp. 903–908, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Yamamoto and K. T. Nojima, “Leaf-shaped bowtie antenna backed by a periodic patch loaded grounded slab,” in Proceedings of the IEEE International Symposium on Antennas and Propagation, pp. 622–625, 2011.
  18. R. C. Hadarig, M. E. de Cos, and F. Las-Heras, “Microstrip patch antenna bandwidth enhancement using AMC/EBG structures,” International Journal of Antennas and Propagation, vol. 2012, Article ID 843754, pp. 1–6, 2012. View at Google Scholar
  19. A. Pirhadi, F. Keshmiri, M. Hakkak, and M. Tayarani, “Analysis and design of dual band high directivity EBG resonator antenna using square loop FSS AS superstrate layer,” Progress in Electromagnetics Research, vol. 70, pp. 1–20, 2007. View at Google Scholar · View at Scopus
  20. Z. Duan, S. Qu, and Y. Hou, “Electrically small antenna inspired by spired split ring resonator,” Progress In Electromagnetics Research Letters, vol. 7, pp. 47–57, 2009. View at Google Scholar · View at Scopus