Table of Contents Author Guidelines Submit a Manuscript
International Journal of Nephrology
Volume 2011 (2011), Article ID 315879, 5 pages
http://dx.doi.org/10.4061/2011/315879
Review Article

The Impact of Fructose on Renal Function and Blood Pressure

1Department of Nephrology, Hypertension and Internal Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, ul. Skłodowskiej-Curie 9, 85-094 Bydgoszcz, Poland
2Division of Renal Diseases and Hypertension, University of Colorado Denver, Denver, CO 80045, USA

Received 20 April 2011; Revised 17 June 2011; Accepted 17 June 2011

Academic Editor: Franca Anglani

Copyright © 2011 Marek Kretowicz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. J. Johnson, M. S. Segal, Y. Sautin et al., “Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease,” American Journal of Clinical Nutrition, vol. 86, no. 4, pp. 899–906, 2007. View at Google Scholar · View at Scopus
  2. L. Tappy and K. A. Le, “Metabolic effects of fructose and the worldwide increase in obesity,” Physiological Reviews, vol. 90, no. 1, pp. 23–46, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. P. J. Havel, “Dietary fructose: implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism,” Nutrition Reviews, vol. 63, no. 5, pp. 133–137, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. G. A. Bray, S. J. Nielsen, and B. M. Popkin, “Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity,” American Journal of Clinical Nutrition, vol. 79, no. 4, pp. 537–543, 2004. View at Google Scholar · View at Scopus
  5. G. Van den Berghe, “Fructose: metabolism and short-term effects on carbohydrate and purine metabolic pathways,” Progress in Biochemical Pharmacology, vol. 21, pp. 1–32, 1986. View at Google Scholar · View at Scopus
  6. J. Hallfrisch, “Metabolic effects of dietary fructose,” FASEB Journal, vol. 4, no. 9, pp. 2652–2660, 1990. View at Google Scholar · View at Scopus
  7. J. C. Bode, O. Zelder, H. J. Rumpelt, and U. Wittkamp, “Depletion of liver adenosine phosphates and metabolic effects of intravenous infusion of fructose or sorbitol in man and in the rat,” European Journal of Clinical Investigation, vol. 3, no. 5, pp. 436–441, 1973. View at Google Scholar · View at Scopus
  8. R. Cirillo, M. S. Gersch, W. Mu et al., “Ketohexokinase-dependent metabolism of fructose Induces proinflammatory mediators in proximal tubular cells,” Journal of the American Society of Nephrology, vol. 20, no. 3, pp. 545–553, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. O. Glushakova, T. Kosugi, C. Roncal et al., “Fructose induces the inflammatory molecule ICAM-1 in endothelial cells,” Journal of the American Society of Nephrology, vol. 19, no. 9, pp. 1712–1720, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Nakayama, T. Kosugi, M. Gersch et al., “Dietary fructose causes tubulointerstitial injury in the normal rat kidney,” American Journal of Physiology—Renal Physiology, vol. 298, no. 3, pp. F712–F720, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. Ackerman, M. Oron-Herman, M. Grozovski et al., “Fructose-induced fatty liver disease: hepatic effects of blood pressure and plasma triglyceride reduction,” Hypertension, vol. 45, no. 5, pp. 1012–1018, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. C. A. Roncal-Jimenez, M. Lanaspa, C. Rivard et al., “Sucrose induces fatty liver and type II diabetes in male Breeder rats independent of excess energy intake metabolism,” Clinical and Experimental. In press.
  13. S. Reungjui, C. A. Roncal, W. Mu et al., “Thiazide diuretics exacerbate fructose-induced metabolic syndrome,” Journal of the American Society of Nephrology, vol. 18, no. 10, pp. 2724–2731, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Nakagawa, H. Hu, S. Zharikov et al., “A causal role for uric acid in fructose-induced metabolic syndrome,” American Journal of Physiology—Renal Physiology, vol. 290, no. 3, pp. F625–F631, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. X. Ouyang, P. Cirillo, Y. Sautin et al., “Fructose consumption as a risk factor for non-alcoholic fatty liver disease,” Journal of Hepatology, vol. 48, no. 6, pp. 993–999, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. M. F. Abdelmalek, A. Suzuki, C. Guy et al., “Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease,” Hepatology, vol. 51, no. 6, pp. 1961–1971, 2010. View at Publisher · View at Google Scholar
  17. M. Dirlewanger, P. Schneiter, E. Jéquier, and L. Tappy, “Effects of fructose on hepatic glucose metabolism in humans,” American Journal of Physiology—Endocrinology and Metabolism, vol. 279, no. 4, pp. E907–E911, 2000. View at Google Scholar
  18. C. B. Niewoehner and F. Q. Nuttall, “Mechanism of stimulation of liver glycogen synthesis by fructose in alloxan diabetic rats,” Diabetes, vol. 35, no. 6, pp. 705–711, 1986. View at Google Scholar · View at Scopus
  19. J. H. Youn, M. S. Youn, and R. N. Bergman, “Synergism of glucose and fructose in net glycogen synthesis in perfused rat livers,” Journal of Biological Chemistry, vol. 261, no. 34, pp. 15960–15969, 1986. View at Google Scholar · View at Scopus
  20. I. Hwang, H. Ho, B. B. Hoffman, and G. M. Reaven, “Fructose-induced insulin resistance and hypertension in rats,” Hypertension, vol. 10, no. 5, pp. 512–516, 1987. View at Google Scholar · View at Scopus
  21. R. Hill, N. Baker, and I. L. Chaikoff, “Altered metabolic patterns induced in the normal rat by feeding an adequate diet containing fructose as sole carbohydrate,” The Journal of Biological Chemistry, vol. 209, pp. 705–716, 1954. View at Google Scholar
  22. K. L. Stanhope, J. M. Schwarz, N. L. Keim et al., “Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans,” Journal of Clinical Investigation, vol. 119, no. 5, pp. 1322–1334, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Morino, K. F. Petersen, and G. I. Shulman, “Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction,” Diabetes, vol. 55, supplement 2, pp. S9–S15, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Nagai, S. Yonemitsu, D. M. Erion et al., “The role of peroxisome proliferator-activated receptor γ coactivator-1 β in the pathogenesis of fructose-induced insulin resistance,” Cell Metabolism, vol. 9, no. 3, pp. 252–264, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Y. Sautin, T. Nakagawa, S. Zharikov, and R. J. Johnson, “Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress,” American Journal of Physiology—Cell Physiology, vol. 293, no. 2, pp. C584–C596, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. S. E. Perez-Pozo, J. Schold, T. Nakagawa, L. G. Sánchez-Lozada, R. J. Johnson, and J. L. Lillo, “Excessive fructose intake induces the features of metabolic syndrome in healthy adult men: role of uric acid in the hypertensive response,” International Journal of Obesity, vol. 34, no. 3, pp. 454–461, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. B. P. Cummings, K. L. Stanhope, J. L. Graham et al., “Dietary fructose accelerates the development of diabetes in UCD-T2DM rats: amelioration by the antioxidant, α-lipoic acid,” American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 298, no. 5, pp. R1343–R1350, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Takagi, A. Kashiwagi, Y. Tanaka, T. Asahina, R. Kikkawa, and Y. Shigeta, “Significance of fructose-induced protein oxidation and formation of advanced glycation end product,” Journal of Diabetes and Its Complications, vol. 9, no. 2, pp. 87–91, 1995. View at Publisher · View at Google Scholar · View at Scopus
  29. R. C. Bell, J. C. Carlson, K. C. Storr, K. Herbert, and J. Sivak, “High-fructose feeding of streptozotocin-diabetic rats is associated with increased cataract formation and increased oxidative stress in the kidney,” British Journal of Nutrition, vol. 84, no. 4, pp. 575–582, 2000. View at Google Scholar · View at Scopus
  30. V. S. Malik, B. M. Popkin, G. A. Bray, J. P. Després, and F. B. Hu, “Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk,” Circulation, vol. 121, no. 11, pp. 1356–1364, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. M. B. Schulze, J. E. Manson, D. S. Ludwig et al., “Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women,” Journal of the American Medical Association, vol. 292, no. 8, pp. 927–934, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. V. S. Malik, B. M. Popkin, G. A. Bray, J.-P. Després, W. C. Willett, and F. B. Hu, “Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis,” Diabetes Care, vol. 33, no. 11, pp. 2477–2483, 2010. View at Publisher · View at Google Scholar
  33. K. L. Teff, S. S. Elliott, M. Tschöp et al., “Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 6, pp. 2963–2972, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. N. M. Avena, P. Rada, and B. G. Hoebel, “Sugar bingeing in rats,” Current Protocols in Neuroscience/Editorial board, Jacqueline N. Crawley ... [et al.], chapter 9, Article ID Unit9.23, 2006. View at Google Scholar · View at Scopus
  35. A. Shapiro, W. Mu, C. Roncal, K. Y. Cheng, R. J. Johnson, and P. J. Scarpace, “Fructose-induced leptin resistance exacerbates weight gain in response to subsequent high-fat feeding,” American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 295, no. 5, pp. R1370–R1375, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Shapiro, N. Tümer, Y. Gao, K.-Y. Cheng, and P. J. Scarpace, “Prevention and reversal of diet-induced leptin resistance with a sugar-free diet despite high fat content,” British Journal of Nutrition, vol. 22, pp. 1–8, 2011. View at Google Scholar
  37. D. I. Jalal, G. Smits, R. J. Johnson, and M. Chonchol, “Increased fructose associates with elevated blood pressure,” Journal of the American Society of Nephrology, vol. 21, no. 9, pp. 1543–1549, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Chen, B. Caballero, D. C. Mitchell et al., “Reducing consumption of sugar-sweetened beverages is associated with reduced blood pressure: a prospective study among United States Adults,” Circulation, vol. 121, no. 22, pp. 2398–2406, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. C. M. Brown, A. G. Dulloo, G. Yepuri, and J. P. Montani, “Fructose ingestion acutely elevates blood pressure in healthy young humans,” American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 294, no. 3, pp. R730–R737, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. L. G. Sánchez-Lozada, E. Tapia, A. Jiménez et al., “Fructose-induced metabolic syndrome is associated with glomerular hypertension and renal microvascular damage in rats,” American Journal of Physiology—Renal Physiology, vol. 292, no. 1, pp. F423–F429, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. G. D'Angelo, A. A. Elmarakby, D. M. Pollock, and D. W. Stepp, “Fructose feeding increases insulin resistance but not blood pressure in Sprague-Dawley rats,” Hypertension, vol. 46, no. 4, pp. 806–811, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. V. Farah, K. M. Elased, Y. Chen et al., “Nocturnal hypertension in mice consuming a high fructose diet,” Autonomic Neuroscience, vol. 130, no. 1-2, pp. 41–50, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. A. K. Singh, H. Amlal, P. J. Haas et al., “Fructose-induced hypertension: essential role of chloride and fructose absorbing transporters PAT1 and Glut5,” Kidney International, vol. 74, no. 4, pp. 438–447, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Madero, S. E. Perez-Pozo, D. Jalal, R. J. Johnson, and L. G. Sanchez-Lozada, “Dietary fructose and hypertension,” Current Hypertension Reports, vol. 13, no. 1, pp. 29–35, 2011. View at Google Scholar
  45. K. R. Bruckdorfer, I. H. Khan, and J. Yudkin, “Dietary carbohydrate and fatty acid synthetase activity in rat liver and adipose tissue,” Biochemical Journal, vol. 123, no. 1, p. 7, 1971. View at Google Scholar · View at Scopus
  46. S. S. Kang, R. G. Price, K. R. Bruckdorfer, N. A. Worcester, and J. Yudkin, “Dietary induced renal damage in the rat,” Proceedings of the Nutrition Society, vol. 36, no. 1, p. 27, 1977. View at Google Scholar · View at Scopus
  47. M. S. Gersch, W. Mu, P. Cirillo et al., “Fructose, but not dextrose, accelerates the progression of chronic kidney disease,” American Journal of Physiology—Renal Physiology, vol. 293, no. 4, pp. F1256–F1261, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. V. Douard, A. Asgerally, Y. Sabbagh et al., “Dietary fructose inhibits intestinal calcium absorption and induces vitamin D insufficiency in CKD,” Journal of the American Society of Nephrology, vol. 21, no. 2, pp. 261–271, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. D. A. Shoham, R. Durazo-Arvizu, H. Kramer et al., “Sugary soda consumption and albuminuria: results from the national health and nutrition examination survey, 1999–2004,” PLoS ONE, vol. 3, no. 10, Article ID e3431, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Vasdev, V. Gill, S. Parai, L. Longerich, and V. Gadag, “Dietary vitamin E and C supplementation prevents fructose induced hypertension in rats,” Molecular and Cellular Biochemistry, vol. 241, no. 1-2, pp. 107–114, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. J. P. Forman, H. Choi, and G. C. Curhan, “Fructose and vitamin C intake do not influence risk for developing hypertension,” Journal of the American Society of Nephrology, vol. 20, no. 4, pp. 863–871, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. K. A. Lê, D. Faeh, R. Stettler et al., “A 4-wk high-fructose diet alters lipid metabolism without affecting insulin sensitivity or ectopic lipids in healthy humans,” American Journal of Clinical Nutrition, vol. 84, no. 6, pp. 1374–1379, 2006. View at Google Scholar · View at Scopus
  53. E. T. Ngo Sock, K. A. Lê, M. Ith, R. Kreis, C. Boesch, and L. Tappy, “Effects of a short-term overfeeding with fructose or glucose in healthy young males,” British Journal of Nutrition, vol. 103, no. 7, pp. 939–943, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. G. Silbernagel, J. Machann, S. Unmuth et al., “Effects of 4-week very-high-fructose/glucose diets on insulin sensitivity, visceral fat and intrahepatic lipids: an exploratory trial,” British Journal of Nutrition, pp. 1–8, 2011. View at Google Scholar
  55. J. Hallfrisch, K. Ellwood, and O. E. Michaelis, “Plasma fructose, uric acid, and inorganic phosphorus responses of hyperinsulinemic men fed fructose,” Journal of the American College of Nutrition, vol. 5, no. 1, pp. 61–68, 1986. View at Google Scholar · View at Scopus
  56. J. Hallfrisch, K. C. Ellwood, O. E. Michaelis et al., “Effects of dietary fructose on plasma glucose and hormone responses in normal and hyperinsulinemic men,” Journal of Nutrition, vol. 113, no. 9, pp. 1819–1826, 1983. View at Google Scholar · View at Scopus
  57. J. Hallfrisch, S. Reiser, and E. S. Prather, “Blood lipid distribution of hyperinsulinemic men consuming three levels of fructose,” American Journal of Clinical Nutrition, vol. 37, no. 5, pp. 740–748, 1983. View at Google Scholar · View at Scopus
  58. K. A. Lê, M. Ith, R. Kreis et al., “Fructose overconsumption causes dyslipidemia and ectopic lipid deposition in healthy subjects with and without a family history of type 2 diabetes,” American Journal of Clinical Nutrition, vol. 89, no. 6, pp. 1760–1765, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Korieh and G. Crouzoulon, “Dietary regulation of fructose metabolism in the intestine and in the liver of the rat. Duration of the effects of a high fructose diet after the return to the standard diet,” Archives Internationales de Physiologie, de Biochimie et de Biophysique, vol. 99, no. 6, pp. 455–460, 1991. View at Google Scholar
  60. F. Stirpe, E. Della Corte, E. Bonetti, A. Abbondanza, A. Abbati, and F. De Stefano, “Fructose-induced hyperuricaemia,” Lancet, vol. 2, no. 7686, pp. 1310–1311, 1970. View at Google Scholar · View at Scopus
  61. K. Ushijima, J. E. Riby, T. Fujisawa, and N. Kretchmer, “Absorption of fructose by isolated small intestine of rats is via a specific saturable carrier in the absence of glucose and by the disaccharidase-related transport system in the presence of glucose,” Journal of Nutrition, vol. 125, no. 8, pp. 2156–2164, 1995. View at Google Scholar · View at Scopus
  62. J. J. Rumessen and E. Gudmand-Hoyer, “Absorption capacity of fructose in healthy adults. Comparison with sucrose and its constituent monosaccharides,” Gut, vol. 27, no. 10, pp. 1161–1168, 1986. View at Google Scholar · View at Scopus