Table of Contents Author Guidelines Submit a Manuscript
International Journal of Nephrology
Volume 2011, Article ID 413760, 5 pages
http://dx.doi.org/10.4061/2011/413760
Research Article

Volume Assessment in Mechanically Ventilated Critical Care Patients Using Bioimpedance Vectorial Analysis, Brain Natriuretic Peptide, and Central Venous Pressure

1Division of Nephrology, London Health Sciences Center, London, Canada N6A 5A5
2Helsinki University Central Hospital, Division of Nephrology, 00029 Helsinki, Finland
3St Bortolo Hospital, Department of Nephrology, 36100 Vicenza, Italy
4Division of Nephrology, Department of Medical and Surgical Sciences, University of Padua, 35128 Padua, Italy
5St Bortolo Hospital, Department of Anesthesia and Intensive Care, 36100 Vicenza, Italy

Received 6 July 2010; Accepted 28 September 2010

Academic Editor: Mitchell H. Rosner

Copyright © 2011 Andrew A. House et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Hadian and M. R. Pinsky, “Functional hemodynamic monitoring,” Current Opinion in Critical Care, vol. 13, no. 3, pp. 318–323, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Rivers, B. Nguyen, S. Havstad et al., “Early goal-directed therapy in the treatment of severe sepsis and septic shock,” The New England Journal of Medicine, vol. 345, no. 19, pp. 1368–1377, 2001. View at Google Scholar
  3. S. M. Lin, C. D. Huang, H. C. Lin, C. Y. Liu, C. H. Wang, and H. P. Kuo, “A modified goal-directed protocol improves clinical outcomes in intensive care unit patients with septic shock: a randomized controlled trial,” Shock, vol. 26, no. 6, pp. 551–557, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. H. P. Wiedemann, A. P. Wheeler, G. R. Bernard et al., “Comparison of two fluid-management strategies in acute lung injury,” New England Journal of Medicine, vol. 354, no. 24, pp. 2564–2575, 2006. View at Publisher · View at Google Scholar
  5. A. P. Wheeler, G. R. Bernard, B. T. Thompson et al., “Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury,” New England Journal of Medicine, vol. 354, no. 21, pp. 2213–2224, 2006. View at Publisher · View at Google Scholar
  6. A. Piccoli, G. Pittoni, E. Facco, E. Favaro, and L. Pillon, “Relationship between central venous pressure and bioimpedance vector analysis in critically ill patients,” Critical Care Medicine, vol. 28, no. 1, pp. 132–137, 2000. View at Google Scholar · View at Scopus
  7. A. Piccoli, S. Nigrelli, A. Caberlotto et al., “Bivariate normal values of the bioelectrical impedance vector in adult and elderly populations,” American Journal of Clinical Nutrition, vol. 61, no. 2, pp. 269–270, 1995. View at Google Scholar · View at Scopus
  8. P. A. McCullough, P. Duc, T. Omland et al., “B-type natriuretic peptide and renal function in the diagnosis of heart failure: an analysis from the Breathing Not Properly Multinational Study,” American Journal of Kidney Diseases, vol. 41, no. 3, pp. 571–579, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Varpula, K. Pulkki, S. Karlsson, E. Ruokonen, and V. Pettilä, “Predictive value of N-terminal pro-brain natriuretic peptide in severe sepsis and septic shock,” Critical Care Medicine, vol. 35, no. 5, pp. 1277–1283, 2007. View at Publisher · View at Google Scholar
  10. B. Meyer, M. Huelsmann, P. Wexberg et al., “N-terminal pro-B-type natriuretic peptide is an independent predictor of outcome in an unselected cohort of critically ill patients,” Critical Care Medicine, vol. 35, no. 10, pp. 2268–2273, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. R. F. Kushner, “Bioelectrical impedance analysis: a review of principles and applications,” Journal of the American College of Nutrition, vol. 11, no. 2, pp. 199–209, 1992. View at Google Scholar · View at Scopus
  12. C. Mitaka, Y. Hirata, K. Habuka et al., “Atrial natriuretic peptide improves pulmonary gas exchange by reducing extravascular lung water in canine model with oleic acid-induced pulmonary edema,” Critical Care Medicine, vol. 30, no. 7, pp. 1570–1575, 2002. View at Google Scholar · View at Scopus
  13. E. D. Sivak, J. Tita, and G. Meden, “Effects of furosemide versus isolated ultrafiltration on extravascular lung water in oleic acid-induced pulmonary edema,” Critical Care Medicine, vol. 14, no. 1, pp. 48–51, 1986. View at Google Scholar · View at Scopus
  14. G. M. Rocker, A. G. Morgan, and D. J. Shale, “Pulmonary oedema and renal failure,” Nephrology Dialysis Transplantation, vol. 3, no. 3, pp. 244–246, 1988. View at Google Scholar · View at Scopus
  15. J. P. Mitchell, D. Schuller, F. S. Calandrino, and D. P. Schuster, “Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization,” American Review of Respiratory Disease, vol. 145, no. 5, pp. 990–998, 1992. View at Google Scholar · View at Scopus
  16. A. G. Vinayak, J. Levitt, B. Gehlbach, A. S. Pohlman, J. B. Hall, and J. P. Kress, “Usefulness of the external jugular vein examination in detecting abnormal central venous pressure in critically ill patients,” Archives of Internal Medicine, vol. 166, no. 19, pp. 2132–2137, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Suresh and K. Farrington, “Natriuretic peptides and the dialysis patient,” Seminars in Dialysis, vol. 18, no. 5, pp. 409–419, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. J. E. Levitt, A. G. Vinayak, B. K. Gehlbach et al., “Diagnostic utility of B-type natriuretic peptide in critically ill patients with pulmonary edema: a prospective cohort study,” Critical Care, vol. 12, no. 1, article no. R3, 2008. View at Publisher · View at Google Scholar · View at Scopus