Table of Contents Author Guidelines Submit a Manuscript
International Journal of Nephrology
Volume 2011, Article ID 516237, 7 pages
http://dx.doi.org/10.4061/2011/516237
Review Article

Endothelin but Not Angiotensin II May Mediate Hypertension-Induced Coronary Vascular Calcification in Chronic Kidney Disease

University of British Columbia, Level 9, 2775 Laurel Street, Vancouver, BC, Canada V5Z 3J5

Received 21 March 2011; Accepted 26 March 2011

Academic Editor: Domenico Russo

Copyright © 2011 Simon W. Rabkin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. D. Abbott, H. Ueshima, K. H. Masaki et al., “Coronary artery calcification and total mortality in elderly men,” Journal of the American Geriatrics Society, vol. 55, no. 12, pp. 1948–1954, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Erbel, S. Mhlenkamp, S. Moebus et al., “Coronary risk stratification, discrimination, and reclassification improvement based on quantification of Subclinical coronary atherosclerosis: the Heinz Nixdorf Recall study,” Journal of the American College of Cardiology, vol. 56, no. 17, pp. 1397–1406, 2010. View at Publisher · View at Google Scholar
  3. A. J. Taylor, J. Bindeman, I. Feuerstein, F. Cao, M. Brazaitis, and P. G. O'Malley, “Coronary calcium independently predicts incident premature coronary heart disease over measured cardiovascular risk factors: mean three-year outcomes in the Prospective Army Coronary Calcium (PACC) project,” Journal of the American College of Cardiology, vol. 46, no. 5, pp. 807–814, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. W. Chiu, S. G. Adler, M. J. Budoff, J. Takasu, J. Ashai, and R. Mehrotra, “Coronary artery calcification and mortality in diabetic patients with proteinuria,” Kidney international, vol. 77, no. 12, pp. 1107–1114, 2010. View at Publisher · View at Google Scholar
  5. C. S. Fox, M. G. Larson, M. J. Keyes et al., “Kidney function is inversely associated with coronary artery calcification in men and women free of cardiovascular disease: the Framingham Heart Study,” Kidney International, vol. 66, no. 5, pp. 2017–2021, 2004. View at Google Scholar · View at Scopus
  6. H. Kramer, R. Toto, R. Peshock, R. Cooper, and R. Victor, “Association between chronic kidney disease and coronary artery calcification: the Dallas heart study,” Journal of the American Society of Nephrology, vol. 16, no. 2, pp. 507–513, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Bursztyn, M. Motro, E. Grossman, and J. Shemesh, “Accelerated coronary artery calcification in mildly reduced renal function of high-risk hypertensives: a 3-year prospective observation,” Journal of Hypertension, vol. 21, no. 10, pp. 1953–1959, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Mehrotra, M. Budoff, P. Christenson et al., “Determinants of coronary artery calcification in diabetics with and without nephropathy,” Kidney International, vol. 66, no. 5, pp. 2022–2031, 2004. View at Google Scholar · View at Scopus
  9. B. R. Kestenbaum, K. L. Adeney, I. H. D. Boer, J. H. Ix, M. G. Shlipak, and D. S. Siscovick, “Incidence and progression of coronary calcification in chronic kidney disease: the multi-ethnic study of atherosclerosis,” Kidney International, vol. 76, no. 9, pp. 991–998, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. R. C. Johnson, J. A. Leopold, and J. Loscalzo, “Vascular calcification: pathobiological mechanisms and clinical implications,” Circulation Research, vol. 99, no. 10, pp. 1044–1059, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. R. C. Shroff, R. McNair, N. Figg et al., “Dialysis accelerates medial vascular calcification in part by triggering smooth muscle cell apoptosis,” Circulation, vol. 118, no. 17, pp. 1748–1757, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. J. L. Reynolds, A. J. Joannides, J. N. Skepper et al., “Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: a potential mechanism for accelerated vascular calcification in ESRD,” Journal of the American Society of Nephrology, vol. 15, no. 11, pp. 2857–2867, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Mune, M. Shibata, I. Hatamura et al., “Mechanism of phosphate-induced calcification in rat aortic tissue culture: possible involvement of Pit-1 and apoptosis,” Clinical and Experimental Nephrology, vol. 13, no. 6, pp. 571–577, 2009. View at Google Scholar · View at Scopus
  14. L. F. Bielak, S. T. Turner, S. S. Franklin, P. F. Sheedy, and P. A. Peyser, “Age-dependent associations between blood pressure and coronary artery calcification in asymptomatic adults,” Journal of Hypertension, vol. 22, no. 4, pp. 719–725, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. J. H. Ix, R. Katz, B. Kestenbaum et al., “Association of mild to moderate kidney dysfunction and coronary calcification,” Journal of the American Society of Nephrology, vol. 19, no. 3, pp. 579–585, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. A. L. Ammirati, M. A. Dalboni, M. Cendoroglo, S. A. Draibe, and M. E. F. Canziani, “Coronary artery calcification, systemic inflammation markers and mineral metabolism in a peritoneal dialysis population,” Nephron, vol. 104, no. 1, pp. c33–c40, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. S. M. Moe, “Vascular calcification and renal osteodystrophy relationship in chronic kidney disease,” European Journal of Clinical Investigation, vol. 36, no. 2, supplement, pp. 51–62, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. G. A. Block, “Control of serum phosphorus: implications for coronary artery calcification and calcific uremic arteriolopathy (calciphylaxis),” Current Opinion in Nephrology and Hypertension, vol. 10, no. 6, pp. 741–747, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. S. M. Moe and N. X. Chen, “Pathophysiology of vascular calcification in chronic kidney disease,” Circulation Research, vol. 95, no. 6, pp. 560–567, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Jono, A. Shioi, Y. Ikari, and Y. Nishizawa, “Vascular calcification in chronic kidney disease,” Journal of Bone and Mineral Metabolism, vol. 24, no. 2, pp. 176–181, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. K. R. Tuttle and R. A. Short, “Longitudinal relationships among coronary artery calcification, serum phosphorus, and kidney function,” Clinical Journal of the American Society of Nephrology, vol. 4, no. 12, pp. 1968–1973, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. S. A. Abedi, M. K. Tarzamni, M. R. J. Nakhjavani, and A. Bohlooli, “Effect of renal transplantation on coronary artery calcification in hemodialysis patients,” Transplantation Proceedings, vol. 41, no. 7, pp. 2829–2831, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Villa-Bellosta, Y. E. Bogaert, M. Levi, and V. Sorribas, “Characterization of phosphate transport in rat vascular smooth muscle cells: implications for vascular calcification,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 5, pp. 1030–1036, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. X. Li, H. Y. Yang, and C. M. Giachelli, “Role of the sodium-dependent phosphate cotransporter, Pit-1, in vascular smooth muscle cell calcification,” Circulation Research, vol. 98, no. 7, pp. 905–912, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Dallaire and R. Beliveau, “Phosphate transport by capillaries of the blood-brain barrier,” The Journal of Biological Chemistry, vol. 267, no. 31, pp. 22323–22327, 1992. View at Google Scholar · View at Scopus
  26. P. S. Sunga and S. W. Rabkin, “Regulation by angiotensin II of phosphate transport in cardiac myocytes,” Biochemical Pharmacology, vol. 42, no. 5, pp. 1123–1128, 1991. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Dallaire, S. Giroux, and R. Beliveau, “Regulation of phosphate transport by second messengers in capillaries of the blood-brain barrier,” Biochimica et Biophysica Acta, vol. 1110, no. 1, pp. 59–64, 1992. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Tomino, “Effects of endothelin 1 on phosphate transport in brush border membrane vesicles,” Nephron, vol. 76, no. 1, pp. 72–76, 1997. View at Google Scholar · View at Scopus
  29. H. Masukawa, Y. Miura, I. Sato, Y. Oiso, and A. Suzuki, “Stimulatory effect of Endothelin-1 on Na-dependent phosphate transport and its signaling mechanism in osteoblast-like cells,” Journal of Cellular Biochemistry, vol. 83, no. 1, pp. 47–55, 2001. View at Publisher · View at Google Scholar
  30. J. Guntupalli and T. D. DuBose Jr., “Effects of endothelin on rat renal proximal tubule Na+-P(i) cotransport and Na+/H+ exchange,” American Journal of Physiology, vol. 266, no. 4, pp. F658–F666, 1994. View at Google Scholar · View at Scopus
  31. M. Cattaruzza, C. Dimigen, H. Ehrenreich, and M. Hecker, “Stretch-induced endothelin B receptor-mediated apoptosis in vascular smooth muscle cells,” FASEB Journal, vol. 14, no. 7, pp. 991–998, 2000. View at Google Scholar · View at Scopus
  32. M. Cattaruzza, M. M. Berger, M. Ochs et al., “Deformation-induced endothelin B receptor-mediated smooth muscle cell apoptosis is matrix-dependent,” Cell Death and Differentiation, vol. 9, no. 2, pp. 219–226, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. J. L. Bascands, J. P. Girolami, M. Troly et al., “Angiotensin II induces phenotype-dependent apoptosis in vascular smooth muscle cells,” Hypertension, vol. 38, no. 6, pp. 1294–1299, 2001. View at Google Scholar · View at Scopus
  34. J. Y. Kong and S. W. Rabkin, “Angiotensin II does not induce apoptosis but rather prevents apoptosis in cardiomyocytes,” Peptides, vol. 21, no. 8, pp. 1237–1247, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Y. Wu, B. H. Zhang, C. S. Pan et al., “Endothelin-1 is a potent regulator in vivo in vascular calcification and in vitro in calcification of vascular smooth muscle cells,” Peptides, vol. 24, no. 8, pp. 1149–1156, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Essalihi, V. Ouellette, H. H. Dao, M. D. McKee, and P. Moreau, “Phenotypic modulation of vascular smooth muscle cells during medial arterial calcification: a role for endothelin?” Journal of Cardiovascular Pharmacology, vol. 44, no. 1, pp. S147–S150, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. H. H. Dao, R. Essalihi, J. F. Graillon, R. Larivière, J. De Champlain, and P. Moreau, “Pharmacological prevention and regression of arterial remodeling in a rat model of isolated systolic hypertension,” Journal of Hypertension, vol. 20, no. 8, pp. 1597–1606, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. E. Mustonen, V. Pohjolainen, J. Aro et al., “Upregulation of cardiac matrix Gla protein expression in response to hypertrophic stimuli,” Blood Pressure, vol. 18, no. 5, pp. 286–293, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. B. J. Bennett, M. Scatena, E. A. Kirk et al., “Osteoprotegerin inactivation accelerates advanced atherosclerotic lesion progression and calcification in older ApoE/ mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 9, pp. 2117–2124, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. C. S. Moran, B. Cullen, J. H. Campbell, and J. Golledge, “Interaction between angiotensin II, osteoprotegerin, and peroxisome proliferator-activated receptor-γ in abdominal aortic aneurysm,” Journal of Vascular Research, vol. 46, no. 3, pp. 209–217, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Golledge, M. McCann, S. Mangan, A. Lam, and M. Karan, “Osteoprotegerin and osteopontin are expressed at high concentrations within symptomatic carotid atherosclerosis,” Stroke, vol. 35, no. 7, pp. 1636–1641, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Westenfeld, C. Schäfer, T. Krüger et al., “Fetuin-A protects against atherosclerotic calcification in CKD,” Journal of the American Society of Nephrology, vol. 20, no. 6, pp. 1264–1274, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. N. Wajih, T. Borras, W. Xue, S. M. Hutson, and R. Wallin, “Processing and transport of matrix γ-carboxyglutamic acid protein and bone morphogenetic protein-2 in cultured human vascular smooth muscle cells: evidence for an uptake mechanism for serum fetuin,” The Journal of Biological Chemistry, vol. 279, no. 41, pp. 43052–43060, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Cottone, A. Palermo, R. Arsena et al., “Relationship of fetuin-A with glomerular filtration rate and endothelial dysfunction in moderate-severe chronic kidney disease,” Journal of Nephrology, vol. 23, no. 1, pp. 62–69, 2010. View at Google Scholar · View at Scopus
  45. R. Mehrotra, R. Westenfeld, P. Christenson et al., “Serum fetuin-A in nondialyzed patients with diabetic nephropathy: relationship with coronary artery calcification,” Kidney International, vol. 67, no. 3, pp. 1070–1077, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. S. M. Moe, M. Reslerova, M. Ketteler et al., “Role of calcification inhibitors in the pathogenesis of vascular calcification in chronic kidney disease (CKD),” Kidney International, vol. 67, no. 6, pp. 2295–2304, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. K. A. Hruska, S. Mathew, and G. Saab, “Bone morphogenetic proteins in vascular calcification,” Circulation Research, vol. 97, no. 2, pp. 105–114, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. X. Li, H. Y. Yang, and C. M. Giachelli, “BMP-2 promotes phosphate uptake, phenotypic modulation, and calcification of human vascular smooth muscle cells,” Atherosclerosis, vol. 199, no. 2, pp. 271–277, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Someya, H. Yuyama, A. Fujimori, M. Ukai, S. Fukushima, and M. Sasamata, “Effect of YM598, a selective endothelin ET receptor antagonist, on endothelin-1-induced bone formation,” European Journal of Pharmacology, vol. 543, no. 1–3, pp. 14–20, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. R. Yamanaka, F. Otsuka, K. Nakamura et al., “Involvement of the bone morphogenetic protein system in endothelin-and aldosterone-induced cell proliferation of pulmonary arterial smooth muscle cells isolated from human patients with pulmonary arterial hypertension,” Hypertension Research, vol. 33, no. 5, pp. 435–445, 2010. View at Publisher · View at Google Scholar
  51. L. A. Fitzpatrick, A. Severson, W. D. Edwards, and R. T. Ingram, “Diffuse calcification in human coronary arteries. Association of osteopontin with atherosclerosis,” Journal of Clinical Investigation, vol. 94, no. 4, pp. 1597–1604, 1994. View at Google Scholar · View at Scopus
  52. Z. Li, Z. Wang, L. Yang et al., “Fibroblast growth factor 2 regulates bone sialoprotein gene transcription in human breast cancer cells,” Journal of Oral Science, vol. 52, no. 1, pp. 125–132, 2010. View at Google Scholar · View at Scopus
  53. H. Chang-zheng, T. Jin, T. Juan et al., “Endothelin signaling axis activates osteopontin expression through PI3 kinase pathway in A375 melanoma cells,” Journal of Dermatological Science, vol. 52, no. 2, pp. 130–132, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. K. Graf, Y. S. Do, N. Ashizawa et al., “Myocardial osteopontin expression is associated with left ventricular hypertrophy,” Circulation, vol. 96, no. 9, pp. 3063–3071, 1997. View at Google Scholar · View at Scopus
  55. M. Shioide and M. Noda, “Endothelin modulates osteopontin and osteocalcin messenger ribonucleic acid expression in rat osteoblastic osteosarcoma cells,” Journal of Cellular Biochemistry, vol. 53, no. 2, pp. 176–180, 1993. View at Google Scholar · View at Scopus
  56. D. deBlois, D. M. Lombardi, E. J. Su, A. W. Clowes, S. M. Schwartz, and C. M. Giachelli, “Angiotensin II induction of osteopontin expression and DNA replication in rat arteries,” Hypertension, vol. 28, no. 6, pp. 1055–1063, 1996. View at Google Scholar · View at Scopus
  57. K. Abe, H. Nakashima, M. Ishida et al., “Angiotensen II-induced osteopontin expression in vascular smooth muscle cells involves Gq/11, Ras, ERK, Src and Ets-1,” Hypertension Research, vol. 31, no. 5, pp. 987–998, 2008. View at Publisher · View at Google Scholar
  58. Z. Xie, D. R. Pimentai, S. Lohan et al., “Regulation of angiotensin II-stimulated osteopontin expression in cardiac microvascular endothelial cells: role of p42/44 mitogen-activated protein kinase and reactive oxygen species,” Journal of Cellular Physiology, vol. 188, no. 1, pp. 132–138, 2001. View at Publisher · View at Google Scholar · View at Scopus
  59. H. P. von Schroeder, C. J. Veillette, J. Payandeh, A. Qureshi, and J. N. M. Heersche, “Endothelin-1 promotes osteoprogenitor proliferation and differentiation in fetal rat calvarial cell cultures,” Bone, vol. 33, no. 4, pp. 673–684, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. Y. Hiruma, A. Inoue, A. Shiohama et al., “Endothelins inhibit the mineralization of osteoblastic MC3T3-E1 cells through the A-type endothelin receptor,” American Journal of Physiology, vol. 275, no. 4, pp. R1099–R1105, 1998. View at Google Scholar · View at Scopus
  61. S. Lamparter, L. Kling, M. Schrader, R. Ziegler, and J. Pfeilschifter, “Effects of angiotensin II on bone cells in vitro,” Journal of Cellular Physiology, vol. 175, no. 1, pp. 89–98, 1998. View at Publisher · View at Google Scholar · View at Scopus
  62. R. Hatton, M. Stimpel, and T. J. Chambers, “Angiotensin II is generated from angiotensin I by bone cells and stimulates osteoclastic bone resorption in vitro,” Journal of Endocrinology, vol. 152, no. 1, pp. 5–10, 1997. View at Google Scholar · View at Scopus
  63. H. Shimizu, H. Nakagami, M. K. Osako et al., “Angiotensin II accelerates osteoporosis by activating osteoclasts,” FASEB Journal, vol. 22, no. 7, pp. 2465–2475, 2008. View at Publisher · View at Google Scholar · View at Scopus