Table of Contents Author Guidelines Submit a Manuscript
International Journal of Nephrology
Volume 2011, Article ID 809378, 10 pages
http://dx.doi.org/10.4061/2011/809378
Research Article

Integrative Bioinformatics Analysis of Proteins Associated with the Cardiorenal Syndrome

1Emergentec Biodevelopment GmbH, Gersthofer Strasse 29-31, 1180 Vienna, Austria
2Department of Internal Medicine IV, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
3KH Elisabethinen Linz, Fadingerstrasse 1, 4010 Linz, Austria
4Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria

Received 19 August 2010; Accepted 17 September 2010

Academic Editor: Mitchell H. Rosner

Copyright © 2011 Irmgard Mühlberger et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The cardiorenal syndrome refers to the coexistence of kidney and cardiovascular disease, where cardiovascular events are the most common cause of death in patients with chronic kidney disease. Both, cardiovascular as well as kidney diseases have been extensively analyzed on a molecular level, resulting in molecular features and associated processes indicating a cross-talk of the two disease etiologies on a pathophysiological level. In order to gain a comprehensive picture of molecular factors contributing to the bidirectional interplay between kidney and cardiovascular system, we mined the scientific literature for molecular features reported as associated with the cardiorenal syndrome, resulting in 280 unique genes/proteins. These features were then analyzed on the level of molecular processes and pathways utilizing various types of protein interaction networks. Next to well established molecular features associated with the renin-angiotensin system numerous proteins involved in signal transduction and cell communication were found, involving specific molecular functions covering receptor binding with natriuretic peptide receptor and ligands as well known example. An integrated analysis of identified features pinpointed a protein interaction network involving mediators of hemodynamic change and an accumulation of features associated with the endothelin and VEGF signaling pathway. Some of these features may function as novel therapeutic targets.