Table of Contents Author Guidelines Submit a Manuscript
International Journal of Nephrology
Volume 2011, Article ID 906832, 9 pages
http://dx.doi.org/10.4061/2011/906832
Review Article

Clinical Impact of Hypercalcemia in Kidney Transplant

Nefrologia, Dialisi e Trapianto Renale, Ospedale Maggiore-Policlinico-Mangiagalli-Regina Elena, IRCCS, 20122 Milano, Italy

Received 24 January 2011; Revised 31 March 2011; Accepted 20 April 2011

Academic Editor: Markus Ketteler

Copyright © 2011 Piergiorgio Messa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Y. Yakupoglu, A. Corsenca, P. Wahl, R. P. Wüthrich, and P. M. Ambühl, “Posttransplant acidosis and associated disorders of mineral metabolism in patients with a renal graft,” Transplantation, vol. 84, no. 9, pp. 1151–1157, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Koç, A. Bihorac, C. I. Ozener, G. Kantarci, and E. Akoglu, “Severe hyperkalemia in two renal transplant recipients treated with standard dose of trimethoprim-sulfamethoxazole,” American Journal of Kidney Diseases, vol. 36, no. 3, p. E18, 2000. View at Google Scholar · View at Scopus
  3. W. Reinhardt, H. Bartelworth, F. Jockenhövel et al., “Sequential changes of biochemical bone parameters after kidney transplantation,” Nephrology Dialysis Transplantation, vol. 13, no. 2, pp. 436–442, 1998. View at Google Scholar · View at Scopus
  4. N. Mohsin, A. Jha, Y. Al Maimani, R. Malvathu, and S. Kallankara, “Hypomagnesemia as a cause of severe cardiac arrythmias in the immediate postoperative period: a renal transplant case report,” Transplantation Proceedings, vol. 35, no. 7, p. 2652, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Ghanekar, B. J. Welch, O. W. Moe, and K. Sakhaee, “Post-renal transplantation hypophosphatemia: a review and novel insights,” Current Opinion in Nephrology and Hypertension, vol. 15, no. 2, pp. 97–104, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. D. S. David, S. Sakai, B. L. Brennan et al., “Hypercalcemia after renal transplantation. Long-term follow-up data,” New England Journal of Medicine, vol. 289, no. 8, pp. 398–401, 1973. View at Google Scholar · View at Scopus
  7. T. Cundy, J. A. Kanis, G. Heynen, P. J. Morris, and D. O. Oliver, “Calcium metabolism and hyperparathyroidism after renal transplantation,” Quarterly Journal of Medicine, vol. 52, no. 205, pp. 67–78, 1983. View at Google Scholar
  8. N. Leca, M. Laftavi, A. Gundroo et al., “Early and severe hyperparathyroidism associated with hypercalcemia after renal transplant treated with cinacalcet,” American Journal of Transplantation, vol. 6, no. 10, pp. 2391–2395, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. O. I. Egbuna, J. G. Taylor, D. A. Bushinsky, and M. S. Zand, “Elevated calcium phosphate product after renal transplantation is a risk factor for graft failure,” Clinical Transplantation, vol. 21, no. 4, pp. 558–566, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Ramezani, B. Einollahi, M. A. Asl et al., “Calcium and phosphorus metabolism disturbances after renal transplantation,” Transplantation Proceedings, vol. 39, no. 4, pp. 1033–1035, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Evenepoel, B. Van Den Bergh, M. Naesens et al., “Calcium metabolism in the early posttransplantation period,” Clinical Journal of the American Society of Nephrology, vol. 4, no. 3, pp. 665–672, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Evenepoel, B. Bammens, K. Claes, D. Kuypers, B. K. Meijers, and Y. Vanrenterghem, “Measuring total blood calcium displays a low sensitivity for the diagnosis of hypercalcemia in incident renal transplant recipients,” Clinical Journal of the American Society of Nephrology, vol. 5, no. 11, pp. 2085–2092, 2010. View at Google Scholar
  13. P. Messa, C. Vallone, G. Mioni et al., “Direct in vivo assessment of parathyroid hormone-calcium relationship curve in renal patients,” Kidney International, vol. 46, no. 6, pp. 1713–1720, 1994. View at Google Scholar · View at Scopus
  14. D. A. McCarron, R. S. Muther, B. Lenfesty, and W. M. Bennett, “Parathyroid function in persistent hyperparathyroidism: relationship to gland size,” Kidney International, vol. 22, no. 6, pp. 662–670, 1982. View at Google Scholar · View at Scopus
  15. M. Rodriguez, A. Martin-Malo, M. E. Martinez, A. Torres, A. J. Felsenfeld, and F. Llach, “Calcemic response to parathyroid hormone in renal failure: role of phosphorus and its effect on calcitriol,” Kidney International, vol. 40, no. 6, pp. 1055–1062, 1991. View at Google Scholar · View at Scopus
  16. K. Borchhardt, I. Sulzbacher, T. Benesch, M. Födinger, G. Sunder-Plassmann, and M. Haas, “Low-turnover bone disease in hypercalcemic hyperparathyroidism after kidney transplantation,” American Journal of Transplantation, vol. 7, no. 11, pp. 2515–2521, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. H. H. Saha, K. T. Salmela, P. J. Ahonen et al., “Sequential changes in vitamin D and calcium metabolism after successful renal transplantation,” Scandinavian Journal of Urology and Nephrology, vol. 28, no. 1, pp. 21–27, 1994. View at Google Scholar · View at Scopus
  18. P. Evenepoel, M. Naesens, K. Claes, D. Kuypers, and Y. Vanrenterghem, “Tertiary 'hyperphosphatoninism' accentuates hypophosphatemia and suppresses calcitriol levels in renal transplant recipients,” American Journal of Transplantation, vol. 7, no. 5, pp. 1193–1200, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Stavroulopoulos, M. J. Cassidy, C. J. Porter, D. J. Hosking, and S. D. Roe, “Vitamin D status in renal transplant recipients,” American Journal of Transplantation, vol. 7, no. 11, pp. 2546–2552, 2007. View at Google Scholar
  20. A. Torres, V. Lorenzo, and E. Salido, “Calcium metabolism and skeletal problems after transplantation,” Journal of the American Society of Nephrology, vol. 13, no. 2, pp. 551–558, 2002. View at Google Scholar · View at Scopus
  21. K. Schankel, J. Robinson, R. D. Bloom et al., “Determinants of coronary artery calcification progression in renal transplant recipients,” American Journal of Transplantation, vol. 7, no. 9, pp. 2158–2164, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Mazzaferro, M. Pasquali, F. Taggi et al., “Progression of coronary artery calcification in renal transplantation and the role of secondary hyperparathyroidism and inflammation,” Clinical Journal of the American Society of Nephrology, vol. 4, no. 3, pp. 685–690, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Messa, B. Brezzi, D. Cresseri et al., “Hypercalcemia is associated with aortic calcification progression after renal transplantation,” NDT Plus, vol. 1, p. ii196, 2008. View at Google Scholar
  24. B. A. Julian, D. A. Laskow, J. Dubovsky, E. V. Dubovsky, J. J. Curtis, and L. D. Quarles, “Rapid loss of vertebral mineral density after renal transplantation,” New England Journal of Medicine, vol. 325, no. 8, pp. 544–550, 1991. View at Google Scholar · View at Scopus
  25. F. P. Westeel, H. Mazouz, F. Ezaitouni et al., “Cyclosporine bone remodeling effect prevents steroid osteopenia after kidney transplantation,” Kidney International, vol. 58, no. 4, pp. 1788–1796, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. M. S. Wu, C. C. Hung, and C. T. Chang, “Renal calcium handling after rapamycin conversion in chronic allograft dysfunction,” Transplant International, vol. 19, no. 2, pp. 140–145, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Giannini, A. D'Angelo, M. Nobile et al., “The effects of vitamin D receptor polymorphism on secondary hyperparathyroidism and bone density after renal transplantation,” Journal of Bone and Mineral Research, vol. 17, no. 10, pp. 1768–1773, 2002. View at Google Scholar
  28. C. M. O'Seaghdha, Q. Yang, N. L. Glazer et al., “Common variants in the calcium-sensing receptor gene are associated with total serum calcium levels,” Human Molecular Genetics, vol. 19, no. 21, pp. 4296–4303, 2010. View at Google Scholar
  29. F. H. Epstein, “Calcium and the kidney,” The American Journal of Medicine, vol. 45, no. 5, pp. 700–714, 1968. View at Google Scholar · View at Scopus
  30. O. Wrong, “Nephrocalcinosis,” in Oxford Textbook of Clinical Nephrology, A. M. Davidsen, J. S. Cameron, and J. P. Grunfeld, Eds., pp. 1375–1396, Oxford University Press, Oxford, UK, 1998. View at Google Scholar
  31. B. J. Nankivell, R. J. Borrows, C. L. S. Fung, P. J. O'Connell, R. D. M. Allen, and J. R. Chapman, “The natural history of chronic allograft nephropathy,” New England Journal of Medicine, vol. 349, no. 24, pp. 2326–2333, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. H. S. Pinheiro, N. O. Câmara, K. S. Osaki, L. A. Ribeiro De Moura, and A. Pacheco-Silva, “Early presence of calcium oxalate deposition in kidney graft biopsies is associated with poor long-term graft survival,” American Journal of Transplantation, vol. 5, no. 2, pp. 323–329, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Boom, M. J. K. Mallat, J. W. de Fijter, L. C. Paul, J. A. Bruijn, and L. A. van Es, “Calcium levels as a risk factor for delayed graft function,” Transplantation, vol. 77, no. 6, pp. 868–873, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. W. Gwinner, S. Suppa, M. Mengel et al., “Early calcification of renal allografts detected by protocol biopsies: causes and clinical implications,” American Journal of Transplantation, vol. 5, no. 8, pp. 1934–1941, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. F. N. Özdemir, B. Afsar, A. Akgul, C. Usluoǧullari, A. Akçay, and M. Haberal, “Persistent hypercalcemia is a significant risk factor for graft dysfunction in renal transplantation recipients,” Transplantation Proceedings, vol. 38, no. 2, pp. 480–482, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Habbig, B. B. Beck, M. Feldkötter et al., “Renal allograft calcification—prevalence and etiology in pediatric patients,” American Journal of Nephrology, vol. 30, no. 3, pp. 194–200, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. B. O'Rourke, “The ins and outs of calcium in heart failure,” Circulation Research, vol. 102, no. 11, pp. 1301–1303, 2008. View at Google Scholar
  38. G. Dayanithi, C. Viero, and I. Shibuya, “The role of calcium in the action and release of vasopressin and oxytocin from CNS neurones/terminals to the heart,” Journal of Physiology and Pharmacology, vol. 59, supplement 8, pp. 7–26, 2008. View at Google Scholar · View at Scopus
  39. K. Gusev, A. A. Domenighetti, L. M. D. Delbridge, T. Pedrazzini, E. Niggli, and M. Egger, “Angiotensin II-mediated adaptive and maladaptive remodeling of cardiomyocyte excitation-contraction coupling,” Circulation Research, vol. 105, no. 1, pp. 42–50, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. P. T. Nguyen, E. Coche, E. Goffin et al., “Prevalence and determinants of coronary and aortic calcifications assessed by chest CT in renal transplant recipients,” American Journal of Nephrology, vol. 27, no. 4, pp. 329–335, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. P. Bubenicek, D. Kautznerova, I. Sotornik, M. Adamec, V. Lanska, and V. Teplan, “Coronary calcium score in renal transplant recipients,” Nephron Clinical Practice, vol. 112, no. 1, pp. c1–c8, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. L. I. Kauppila, J. F. Polak, L. A. Cupples, M. T. Hannan, D. P. Kiel, and P. W. F. Wilson, “New indices to classify location, severity and progression of calcific lesions in the abdominal aorta: a 25-year follow-up study,” Atherosclerosis, vol. 132, no. 2, pp. 245–250, 1997. View at Publisher · View at Google Scholar · View at Scopus
  43. M. A. Perazella and M. J. Bia, “Posttransplant erythrocytosis: case report and review of newer treatment modalities,” Journal of the American Society of Nephrology, vol. 3, no. 10, pp. 1653–1659, 1993. View at Google Scholar · View at Scopus
  44. R. S. Gaston, B. A. Julian, C. V. Barker, A. G. Diethelm, and J. J. Curtis, “Enalapril: safe and effective therapy for posttransplant erythrocytosis,” Transplantation Proceedings, vol. 25, no. 1, pp. 1029–1031, 1993. View at Google Scholar · View at Scopus
  45. G. M. Danovitch, N. J. Jamgotchian, P. H. Eggena et al., “Angiotensin-converting enzyme inhibition in the treatment of renal transplant erythrocytosis. Clinical experience and observation of mechanism,” Transplantation, vol. 60, no. 2, pp. 132–137, 1995. View at Google Scholar · View at Scopus
  46. M. Mrug, T. Stopka, B. A. Julian, J. F. Prchal, and J. T. Prchal, “Angiotensin II stimulates proliferation of normal early erythroid progenitors,” Journal of Clinical Investigation, vol. 100, no. 9, pp. 2310–2314, 1997. View at Google Scholar · View at Scopus
  47. M. Kurella, D. W. Butterly, and S. R. Smith, “Post transplant erythrocytosis in hypercalcemic renal transplant recipients,” American Journal of Transplantation, vol. 3, no. 7, pp. 873–877, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Akcay, M. Kanbay, B. Huddam et al., “Relationship of posttransplantation erythrocytosis to hypercalcemia in renal transplant recipients,” Transplantation Proceedings, vol. 37, no. 7, pp. 3103–3105, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. L. D. Goldberg and E. M. Herschmann, “Letter: hypercalcemia and pancreatitis,” Journal of the American Medical Association, vol. 236, no. 12, p. 1352, 1976. View at Google Scholar · View at Scopus
  50. T. W. Frick, D. S. Fryd, D. E. R. Sutherland, R. L. Goodale, R. L. Simmons, and J. S. Najarian, “Hypercalcemia associated with pancreatitis and hyperamylasemia in renal transplant recipients. Data from the Minnesota randomized trial of cyclosporine versus antilymphoblast azathioprine,” American Journal of Surgery, vol. 154, no. 5, pp. 487–489, 1987. View at Google Scholar · View at Scopus
  51. P. Evenepoel, K. Claes, D. Kuypers, B. Maes, and Y. Vanrenterghem, “Impact of parathyroidectomy on renal graft function, blood pressure and serum lipids in kidney transplant recipients: a single centre study,” Nephrology Dialysis Transplantation, vol. 20, no. 8, pp. 1714–1720, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Schwarz, G. Rustien, S. Merkel, J. Radermacher, and H. Haller, “Decreased renal transplant function after parathyroidectomy,” Nephrology Dialysis Transplantation, vol. 22, no. 2, pp. 584–591, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. P. Evenepoel, K. Claes, D. R. Kuypers, F. Debruyne, and Y. Vanrenterghem, “Parathyroidectomy after successful kidney transplantation: a single centre study,” Nephrology Dialysis Transplantation, vol. 22, no. 6, pp. 1730–1737, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. H. Bonarek, P. Merville, M. Bonarek et al., “Reduced parathyroid functional mass after successful kidney transplantation,” Kidney International, vol. 56, no. 2, pp. 642–649, 1999. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Taniguchi, M. Tokumoto, D. Matsuo et al., “Persistent hyperparathyroidism in renal allograft recipients: vitamin D receptor, calcium-sensing receptor, and apoptosis,” Kidney International, vol. 70, no. 2, pp. 363–370, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Meola, I. Petrucci, and G. Barsotti, “Long-term treatment with cinacalcet and conventional therapy reduces parathyroid hyperplasia in severe secondary hyperparathyroidism,” Nephrology Dialysis Transplantation, vol. 24, no. 3, pp. 982–989, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. H. Komaba, S. Nakanishi, A. Fujimori et al., “Cinacalcet effectively reduces parathyroid hormone secretion and gland volume regardless of pretreatment gland size in patients with secondary hyperparathyroidism,” Clinical Journal of the American Society of Nephrology, vol. 5, no. 12, pp. 2305–2314, 2010. View at Google Scholar
  58. A. L. Serra, R. Savoca, A. R. Huber et al., “Effective control of persistent hyperparathyroidism with cinacalcet in renal allograft recipients,” Nephrology Dialysis Transplantation, vol. 22, no. 2, pp. 577–583, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. I. Szwarc, A. Argilés, V. Garrigue et al., “Cinacalcet chloride is efficient and safe in renal transplant recipients with posttransplant hyperparathyroidism,” Transplantation, vol. 82, no. 5, pp. 675–680, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. T. R. Srinivas, J. D. Schold, K. L. Womer et al., “Improvement in hypercalcemia with cinacalcet after kidney transplantation,” Clinical Journal of the American Society of Nephrology, vol. 1, no. 2, pp. 323–326, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. A. E. Kruse, U. Eisenberger, F. J. Frey, and M. G. Mohaupt, “Effect of cinacalcet cessation in renal transplant recipients with persistent hyperparathyroidism,” Nephrology Dialysis Transplantation, vol. 22, no. 8, pp. 2362–2365, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. L. W. Peng, J. L. Logan, S. H. James, K. M. Scott, and Y. H. Lien, “Cinacalcet-associated graft dysfunction and nephrocalcinosis in a kidney transplant recipient,” American Journal of Medicine, vol. 120, no. 9, pp. e7–e9, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. J. M. El-Amm, M. D. Doshi, A. Singh et al., “Preliminary experience with cinacalcet use in persistent secondary hyperparathyroidism after kidney transplantation,” Transplantation, vol. 83, no. 5, pp. 546–549, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. C. Bergua, J. V. Torregrosa, D. Fuster, A. Gutierrez-Dalmau, F. Oppenheimer, and J. M. Campistol, “Effect of cinacalcet on hypercalcemia and bone mineral density in renal transplanted patients with secondary hyperparathyroidism,” Transplantation, vol. 86, no. 3, pp. 413–417, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. K. A. Borchhardt, H. Heinzl, E. Mayerwöger, W. H. Hörl, M. Haas, and G. Sunder-Plassmann, “Cinacalcet increases calcium excretion in hypercalcemic hyperparathyroidism after kidney transplantation,” Transplantation, vol. 86, no. 7, pp. 919–924, 2008. View at Google Scholar
  66. P. Falck, N. T. Vethe, A. Åsberg et al., “Cinacalcet's effect on the pharmacokinetics of tacrolimus, cyclosporine and mycophenolate in renal transplant recipients,” Nephrology Dialysis Transplantation, vol. 23, no. 3, pp. 1048–1053, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. V. López, R. Toledo, E. Sola et al., “Treatment with cinacalcet in 29 kidney transplant patients with persistent hyperparathyroidism,” Transplantation Proceedings, vol. 41, no. 6, pp. 2394–2395, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. K. A. Borchhardt, D. Diarra, I. Sulzbacher, T. Benesch, M. Haas, and G. Sunder-Plassmann, “Cinacalcet decreases bone formation rate in hypercalcemic hyperparathyroidism after kidney transplantation,” American Journal of Nephrology, vol. 31, no. 6, pp. 482–489, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. E. Morales, E. Gutierrez, and A. Andres, “Treatment with calcimimetics in kidney transplantation,” Transplantation Reviews, vol. 24, no. 2, pp. 79–88, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. G. Vezzoli, A. Scillitani, S. Corbetta et al., “Polymorphisms at the regulatory regions of the CASR gene influence stone risk in primary hyperparathyroidism,” European Journal of Endocrinology, vol. 164, no. 3, pp. 421–427, 2011. View at Google Scholar
  71. U. Thiem, G. Heinze, R. Segel et al., “K. VITA-D: cholecalciferol substitution in vitamin D deficient kidney transplant recipients: a randomized, placebo-controlled study to evaluate the post-transplant outcome,” Trials, vol. 10, p. 36, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Courbebaisse, E. Thervet, J. C. Souberbielle et al., “Effects of vitamin D supplementation on the calcium-phosphate balance in renal transplant patients,” Kidney International, vol. 75, no. 6, pp. 646–651, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. A. E. Kruse, U. Eisenberger, F. J. Frey, and M. G. Mohaupt, “The calcimimetic cinacalcet normalizes serum calcium in renal transplant patients with persistent hyperparathyroidism,” Nephrology Dialysis Transplantation, vol. 20, no. 7, pp. 1311–1314, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. A. L. Serra, A. A. Schwarz, F. H. Wick, H. P. Marti, and R. P. Wüthrich, “Successful treatment of hypercalcemia with cinacalcet in renal transplant recipients with persistent hyperparathyroidism,” Nephrology Dialysis Transplantation, vol. 20, no. 7, pp. 1315–1319, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. P. Falck, N. T. Vethe, A. Åsberg et al., “Cinacalcet's effect on the pharmacokinetics of tacrolimus, cyclosporine and mycophenolate in renal transplant recipients,” Nephrology Dialysis Transplantation, vol. 23, no. 3, pp. 1048–1053, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. U. Christians, K. Kohlhaw, J. Budniak et al., “Ciclosporin metabolite pattern in blood and urine of liver graft recipients. I. Association of ciclosporin metabolites with nephrotoxicity,” European Journal of Clinical Pharmacology, vol. 41, no. 4, pp. 285–290, 1991. View at Google Scholar · View at Scopus