Table of Contents Author Guidelines Submit a Manuscript
International Journal of Nephrology
Volume 2012 (2012), Article ID 146987, 11 pages
http://dx.doi.org/10.1155/2012/146987
Review Article

Urinary Markers of Glomerular Injury in Diabetic Nephropathy

1Department of Medicine, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135, USA
2Division of Nephrology, Tufts Medical Center, Boston, MA 02111, USA

Received 21 January 2012; Accepted 20 February 2012

Academic Editor: Omran Bakoush

Copyright © 2012 Abraham Cohen-Bucay and Gautham Viswanathan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. International Diabetes Federation, Diabetes Atlas Fifth Edition, International Diabets Federation, Brussels, Belgium, 2011.
  2. P. Zhang, X. Zhang, J. Brown et al., “Global healthcare expenditure on diabetes for 2010 and 2030,” Diabetes Research and Clinical Practice, vol. 87, no. 3, pp. 293–301, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. World Health Organization, Global Status Report on Noncommunicable Diseases 2010, World Health Organization, Geneva, Switzerland, 2008.
  4. M. E. Hellemons, J. Kerschbaum, S. J. Bakker et al., “Validity of biomarkers predicting onset or progression of nephropathy in patients with Type 2 diabetes: a systematic review,” Diabetic Medicine, vol. 29, no. 5, pp. 567–577, 2012. View at Publisher · View at Google Scholar
  5. C. Y. Hong and K. S. Chia, “Markers of diabetic nephropathy,” Journal of Diabetes and its Complications, vol. 12, no. 1, pp. 43–60, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Remuzzi, A. Schieppati, and P. Ruggenenti, “Nephropathy in patients with type 2 diabetes,” New England Journal of Medicine, vol. 346, no. 15, pp. 1145–1151, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. D. de Zeeuw, D. Ramjit, Z. Zhang et al., “Renal risk and renoprotection among ethnic groups with type 2 diabetic nephropathy: a post hoc analysis of RENAAL,” Kidney International, vol. 69, no. 9, pp. 1675–1682, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Ruggenenti and G. Remuzzi, “Time to abandon microalbuminuria?” Kidney International, vol. 70, no. 7, pp. 1214–1222, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. S. F. Dinneen and H. C. Gerstein, “The association of microalbuminuria and mortality in non-insulin- dependent diabetes mellitus: a systematic overview of the literature,” Archives of Internal Medicine, vol. 157, no. 13, pp. 1413–1418, 1997. View at Google Scholar · View at Scopus
  10. T. Ninomiya, V. Perkovic, B. E. De Galan et al., “Albuminuria and kidney function independently predict cardiovascular and renal outcomes in diabetes,” Journal of the American Society of Nephrology, vol. 20, no. 8, pp. 1813–1821, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. S. Kanwar, J. Wada, L. Sun et al., “Diabetic nephropathy: mechanisms of renal disease progression,” Experimental Biology and Medicine, vol. 233, no. 1, pp. 4–11, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Matheson, M. D. P. Willcox, J. Flanagan, and B. J. Walsh, “Urinary biomarkers involved in type 2 diabetes: a review,” Diabetes/Metabolism Research and Reviews, vol. 26, no. 3, pp. 150–171, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Lehmann and E. D. Schleicher, “Molecular mechanism of diabetic nephropathy,” Clinica Chimica Acta, vol. 297, no. 1-2, pp. 135–144, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Nakamura and B. D. Myers, “Charge selectivity of proteinuria in diabetic glomerulopathy,” Diabetes, vol. 37, no. 9, pp. 1202–1211, 1988. View at Google Scholar · View at Scopus
  15. P. Pietravalle, S. Morano, G. Cristina et al., “Charge selectivity of proteinuria in type I diabetes explored by Ig subclass clearance,” Diabetes, vol. 40, no. 12, pp. 1685–1690, 1991. View at Google Scholar · View at Scopus
  16. T. Deckert, A. Kofoed-Enevoldsen, P. Vidal, K. Norgaard, H. B. Andreasen, and B. Feldt-Rasmussen, “Size- and charge selectivity of glomerular filtration in Type 1 (insulin-dependent) diabetic patients with and without albuminuria,” Diabetologia, vol. 36, no. 3, pp. 244–251, 1993. View at Google Scholar · View at Scopus
  17. S. Morano, P. Pietravalle, M. G. De Rossi et al., “A charge selectivity impairment in protein permselectivity is present in type 2 diabetes,” Acta Diabetologica, vol. 30, no. 3, pp. 138–142, 1993. View at Google Scholar · View at Scopus
  18. O. Torffvit and B. Rippe, “Size and charge selectivity of the glomerular filter in patients with insulin-dependent diabetes mellitus: urinary immunoglobulins and glycosaminoglycans,” Nephron, vol. 83, no. 4, pp. 301–307, 1999. View at Google Scholar · View at Scopus
  19. A. Kofoed-Enevoldsen, W. J. Foyle, M. Fernandez, and J. S. Yudkin, “Evidence of impaired glomerular charge selectivity in nondiabetic subjects with microalbuminuria: relevance to cardiovascular disease,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 16, no. 3, pp. 450–454, 1996. View at Google Scholar · View at Scopus
  20. M. Jeansson, A. B. Granqvist, J. S. Nyström, and B. Haraldsson, “Functional and molecular alterations of the glomerular barrier in long-term diabetes in mice,” Diabetologia, vol. 49, no. 9, pp. 2200–2209, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. M. A. Gall, P. Rossing, A. Kofoed-Enevoldsen, F. S. Nielsen, and H. H. Parving, “Glomerular size- and charge selectivity in Type 2 (non-insulin-dependent) diabetic patients with diabetic nephropathy,” Diabetologia, vol. 37, no. 2, pp. 195–201, 1994. View at Google Scholar · View at Scopus
  22. S. Friedman, H. W. Jones, and H. V. Golbetz, “Mechanisms of proteinuria in diabetic nephropathy II. A study of the size-selective glomerular filtration barrier,” Diabetes, vol. 32, supplement 2, pp. 40–46, 1983. View at Google Scholar
  23. S. Andersen, K. Blouch, J. Bialek, M. Deckert, H. H. Parving, and B. D. Myers, “Glomerular permselectivity in early stages of overt diabetic nephropathy,” Kidney International, vol. 58, no. 5, pp. 2129–2137, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Rippe, A. Rippe, O. Torffvit, and B. Rippe, “Size and charge selectivity of the glomerular filter in early experimental diabetes in rats,” American Journal of Physiology, vol. 293, no. 5, pp. F1533–F1538, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. T. H. Hostetter, H. G. Rennke, and B. M. Brenner, “The case for intrarenal hypertension in the initiation and progression of diabetic and other glomerulopathies,” American Journal of Medicine, vol. 72, no. 3, pp. 375–380, 1982. View at Google Scholar · View at Scopus
  26. R. Zatz, T. W. Meyer, H. G. Rennke, and B. M. Brenner, “Predominance of hemodynamic rather than metabolic factors in the pathogenesis of diabetic glomerulopathy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 82, no. 17, pp. 5963–5967, 1985. View at Google Scholar · View at Scopus
  27. S. Anderson and B. M. Brenner, “Pathogenesis of diabetic glomerulopathy: hemodynamic considerations,” Diabetes/Metabolism Reviews, vol. 4, no. 2, pp. 163–177, 1988. View at Google Scholar · View at Scopus
  28. H. Birn and E. I. Christensen, “Renal albumin absorption in physiology and pathology,” Kidney International, vol. 69, no. 3, pp. 440–449, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Haraldsson, J. Nyström, and W. M. Deen, “Properties of the glomerular barrier and mechanisms of proteinuria,” Physiological Reviews, vol. 88, no. 2, pp. 451–487, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. D. Venturoli and B. Rippe, “Ficoll and dextran vs. globular proteins as probes for testing glomerular permselectivity: effects of molecular size, shape, charge, and deformability,” American Journal of Physiology, vol. 288, no. 4, pp. F605–F613, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. H. C. Gerstein, J. F. E. Mann, Q. Yi et al., “Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals,” Journal of the American Medical Association, vol. 286, no. 4, pp. 421–426, 2001. View at Google Scholar · View at Scopus
  32. K. Wachtell, H. Ibsen, M. H. Olsen et al., “Albuminuria and cardiovascular risk in hypertensive patients with left ventricular hypertrophy: the LIFE study,” Annals of Internal Medicine, vol. 139, no. 11, pp. 901–I26, 2003. View at Google Scholar · View at Scopus
  33. K. Klausen, K. Borch-Johnsen, B. Feldt-Rasmussen et al., “Very low levels of microalbuminuria are associated with increased risk of coronary heart disease and death independently of renal function, hypertension, and diabetes,” Circulation, vol. 110, no. 1, pp. 32–35, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. A. I. Adler, R. J. Stevens, S. E. Manley, R. W. Bilous, C. A. Cull, and R. R. Holman, “Development and progression of nephropathy in type 2 diabetes: the United Kingdom prospective diabetes study (UKPDS 64),” Kidney International, vol. 63, no. 1, pp. 225–232, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. American Diabetes Association, “Executive summary: standards of medical care in diabetes—2011,” Diabetes Care, vol. 34, supplement 1, pp. S4–S10, 2011. View at Publisher · View at Google Scholar
  36. D. de Zeeuw, G. Remuzzi, H. H. Parving et al., “Albuminuria, a therapeutic target for cardiovascular protection in type 2 diabetic patients with nephropathy,” Circulation, vol. 110, no. 8, pp. 921–927, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. J. H. An, Y. M. Cho, H. G. Yu et al., “The clinical characteristics of normoalbuminuric renal insufficiency in Korean type 2 diabetic patients: a possible early stage renal complication,” Journal of Korean medical science, vol. 24, pp. S75–81, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. W. G. Miller, D. E. Bruns, G. L. Hortin et al., “Current issues in measurement and reporting of urinary albumin excretion,” Clinical Chemistry, vol. 55, no. 1, pp. 24–38, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Yamazaki, N. Tani, K. Igarashi et al., “Changes in the glomerular pore size selectivity in patients with type II diabetes mellitus,” Journal of Diabetic Complications, vol. 5, no. 2-3, pp. 138–139, 1991. View at Google Scholar · View at Scopus
  40. M. Kanauchi, H. Nishioka, T. Hashimoto, and K. Dohi, “Diagnostic significance of urinary transferrin in diabetic nephropathy,” Nippon Jinzo Gakkai shi, vol. 37, no. 11, pp. 649–654, 1995. View at Google Scholar · View at Scopus
  41. M. Kanauchi, Y. Akai, and T. Hashimoto, “Transferrinuria in type 2 diabetic patients with early nephropathy and tubulointerstitial injury,” European Journal of Internal Medicine, vol. 13, no. 3, pp. 190–193, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. C. K. Cheung, C. S. Cockram, V. T. F. Yeung, and R. Swaminathan, “Urinary excretion of transferrin by non-insulin-dependent diabetics: a marker for early complications?” Clinical Chemistry, vol. 35, no. 8, pp. 1672–1674, 1989. View at Google Scholar · View at Scopus
  43. P. Martin, C. Walton, C. Chapman, H. J. Bodansky, and M. H. Stickland, “Increased urinary excretion of transferrin in children with Type 1 diabetes mellitus,” Diabetic Medicine, vol. 7, no. 1, pp. 35–40, 1990. View at Google Scholar · View at Scopus
  44. Y. Zhou, X. Zhang, and J. Wu, “Clinical significance of microtransferrinuria in diabetic patients,” Zhonghua nei ke za zhi, vol. 36, no. 3, pp. 165–168, 1997. View at Google Scholar · View at Scopus
  45. D. Ellis, D. J. Becker, and D. Daneman, “Proteinuria in children with insulin dependent diabetes: relationship to duration of disease, metabolic control, and retinal changes,” Journal of Pediatrics, vol. 102, no. 5, pp. 673–680, 1983. View at Google Scholar · View at Scopus
  46. O. Kordonouri, A. Jorres, C. Muller, I. Enders, G. M. Gahl, and B. Weber, “Quantitative assessment of urinary protein and enzyme excretion-a diagnostic programme for the detection of renal involvement in type I diabetes mellitus,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 52, no. 8, pp. 781–790, 1992. View at Google Scholar · View at Scopus
  47. P. Martin, H. Tindall, J. N. Harvey, T. M. Handley, C. Chapman, and J. A. Davies, “Glomerular and tubular proteinuria in Type 1 (insulin-dependent) diabetic patients with and without retinopathy,” Annals of Clinical Biochemistry, vol. 29, no. 3, pp. 265–270, 1992. View at Google Scholar · View at Scopus
  48. T. Narita, M. Hosoba, T. Miura et al., “Low dose of losartan decreased urinary excretions of IgG, transferrin, and ceruloplasmin without reducing albuminuria in normoalbuminuric type 2 diabetic patients,” Hormone and Metabolic Research, vol. 40, no. 4, pp. 292–295, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Konen, Z. Shihabi, and J. Newman, “The association of non-insulin-dependent diabetes mellitus and hypertension with urinary excretion of albumin and transferrin,” American Journal of Kidney Diseases, vol. 22, no. 6, pp. 791–797, 1993. View at Google Scholar · View at Scopus
  50. A. Bernard, A. O. Amor, J. Goemare-Vanneste et al., “Urinary proteins and red blood cell membrane negative charges in diabetes mellitus,” Clinica Chimica Acta, vol. 190, no. 3, pp. 249–262, 1990. View at Publisher · View at Google Scholar · View at Scopus
  51. A. M. Bernard, A. A. Ouled Amor, J. Goemaere-Vanneste et al., “Microtransferrinuria is a more sensitive indicator of early glomerular damage in diabetes than microalbuminuria,” Clinical Chemistry, vol. 34, no. 9, pp. 1920–1921, 1988. View at Google Scholar · View at Scopus
  52. C. P. McCormick, J. C. Konen, and Z. K. Shihabi, “Microtransferrinuria and microalbuminuria: I. In the diabetic human,” Clinical Physiology and Biochemistry, vol. 8, no. 2, pp. 53–58, 1990. View at Google Scholar · View at Scopus
  53. M. J. O'Donnell, P. Martin, C. M. Florkowski et al., “Urinary transferrin excretion in Type 1 (insulin-dependent) diabetes mellitus,” Diabetic Medicine, vol. 8, no. 7, pp. 657–661, 1991. View at Google Scholar · View at Scopus
  54. M. J. O'Donnell, P. Martin, D. Cavan et al., “Increased urinary transferrin excretion in exercising normoalbuminuric insulin-dependent diabetic patients,” Annals of Clinical Biochemistry, vol. 28, no. 5, pp. 456–460, 1991. View at Google Scholar · View at Scopus
  55. T. Kazumi, T. Hozumi, Y. Ishida et al., “Increased urinary transferrin excretion predicts microalbuminuria in patients with type 2 diabetes,” Diabetes Care, vol. 22, no. 7, pp. 1176–1180, 1999. View at Publisher · View at Google Scholar · View at Scopus
  56. T. Narita, M. Hosoba, M. Kakei, and S. Ito, “Increased urinary excretions of immunoglobulin G, ceruloplasmin, and transferrin predict development of microalbuminuria in patients with type 2 diabetes,” Diabetes Care, vol. 29, no. 1, pp. 142–144, 2006. View at Google Scholar · View at Scopus
  57. R. L. Howard, B. Buddington, and A. C. Alfrey, “Urinary albumin, transferrin and iron excretion in diabetic patients,” Kidney International, vol. 40, no. 5, pp. 923–926, 1991. View at Google Scholar · View at Scopus
  58. G. Jerums, T. J. Allen, and M. E. Cooper, “Triphasic changes in selectivity with increasing proteinuria in Type 1 and Type 2 diabetes,” Diabetic Medicine, vol. 6, no. 9, pp. 772–779, 1989. View at Google Scholar · View at Scopus
  59. M. J. O'Donnell, J. Watson, P. Martin, C. Chapman, and A. H. Barnett, “Transferrinuria in type 2 diabetes: the effect of glycaemic control,” Annals of Clinical Biochemistry, vol. 28, no. 2, pp. 174–178, 1991. View at Google Scholar · View at Scopus
  60. A. Sasaki, S. Oikawa, and T. Toyota, “Microalbuminuria is closely related to diabetic macroangiopathy,” Diabetes Research and Clinical Practice, vol. 44, no. 1, pp. 35–40, 1999. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Yaqoob, P. McClelland, A. W. Patrick, A. Stevenson, H. Mason, and G. M. Bell, “Tubulopathy with macroalbuminuria due to diabetic nephropathy and primary glomerulonephritis,” Kidney International, no. 47, pp. S-101–S-104, 1994. View at Google Scholar · View at Scopus
  62. M. Yaqoob, P. McClelland, A. W. Patrick, A. Stevenson, H. Mason, and G. M. Bell, “Tubular damage in microalbuminuric patients with primary glomerulonephritis and diabetic nephropathy,” Renal Failure, vol. 17, no. 1, pp. 43–49, 1995. View at Google Scholar · View at Scopus
  63. G. Jerums, M. E. Cooper, E. Seeman, R. M. Murray, and J. J. McNeil, “Comparison of early renal dysfunction in type I and II diabetes: differing associations with blood pressure and glycaemic control,” Diabetes Research and Clinical Practice, vol. 4, no. 2, pp. 133–141, 1987. View at Google Scholar · View at Scopus
  64. M. Hosoba, H. Fujita, T. Miura et al., “Diurnal changes in urinary excretion of IgG, transferrin, and ceruloplasmin depend on diurnal changes in systemic blood pressure in normotensive, normoalbuminuric type 2 diabetic patients,” Hormone and Metabolic Research, vol. 41, no. 12, pp. 910–915, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. S. Murayama, T. Hirano, T. Sakaue, K. Okada, R. Ikejiri, and M. Adachi, “Low-dose candesartan cilexetil prevents early kidney damage in type 2 diabetic patients with mildly elevated blood pressure,” Hypertension Research, vol. 26, no. 6, pp. 453–458, 2003. View at Publisher · View at Google Scholar
  66. S. Kado, A. Aoki, S. Wada et al., “Urinary type IV collagen as a marker for early diabetic nephropathy,” Diabetes Research and Clinical Practice, vol. 31, no. 1–3, pp. 103–108, 1996. View at Publisher · View at Google Scholar · View at Scopus
  67. F. N. Ziyadeh, “Renal tubular basement membrane and collagen type IV in diabetes mellitus,” Kidney International, vol. 43, no. 1, pp. 114–120, 1993. View at Google Scholar · View at Scopus
  68. B. Olgemöller and E. Schleicher, “Alterations of glomerular matrix proteins in the pathogenesis of diabetic nephropathy,” Clinical Investigator, vol. 71, no. 5, pp. S13–S19, 1993. View at Google Scholar · View at Scopus
  69. H. Okonogi, M. Nishimura, Y. Utsunomiya et al., “Urinary type IV collagen excretion reflects renal morphological alterations and type IV collagen expression in patients with type 2 diabetes mellitus,” Clinical Nephrology, vol. 55, no. 5, pp. 357–364, 2001. View at Google Scholar · View at Scopus
  70. S. Ming, Z. Qi, L. Wang, and K. Zhu, “Urinary type IV collagen: a specific indicator of incipient diabetic nephropathy,” Chinese Medical Journal, vol. 115, no. 3, pp. 389–394, 2002. View at Google Scholar · View at Scopus
  71. N. Banu, H. Hara, M. Okamura, G. Egusa, and M. Yamakido, “Urinary excretion of type IV collagen and laminin in the evaluation of nephropathy in NIDDM: comparison with urinary albumin and markers of tubular dysfunction and/or damage,” Diabetes Research and Clinical Practice, vol. 29, no. 1, pp. 57–67, 1995. View at Publisher · View at Google Scholar · View at Scopus
  72. N. Kotajima, T. Kimura, T. Kanda et al., “Type IV collagen as an early marker for diabetic nephropathy in non-insulin-dependent diabetes mellitus,” Journal of Diabetes and its Complications, vol. 14, no. 1, pp. 13–17, 2000. View at Publisher · View at Google Scholar · View at Scopus
  73. N. Banu, H. Hara, S. Kataoka, G. Egusa, and M. Yamakido, “A novel method for concentrating urinary type IV collagen based on precipitation with polyethylene glycol:application to its measurement by enzyme immunoassay,” Annals of Clinical Biochemistry, vol. 31, no. 5, pp. 485–491, 1994. View at Google Scholar · View at Scopus
  74. N. Banu, H. Hara, G. Egusa, and M. Yamakido, “Serum and urinary type IV collagen concentrations in the assessment of diabetic microangiopathy,” Hiroshima Journal of Medical Sciences, vol. 43, no. 4, pp. 123–133, 1994. View at Google Scholar · View at Scopus
  75. Y. Hayashi, H. Makino, and Z. Ota, “Serum and urinary concentrations of type IV collagen and laminin as a marker of microangiopathy in diabetes,” Diabetic Medicine, vol. 9, no. 4, pp. 366–370, 1992. View at Google Scholar · View at Scopus
  76. Y. Hayashi, H. Makino, K. Shikata et al., “Increased concentrations of the basement membrane component type IV collagen in sera and urine of diabetics,” Journal of Diabetic Complications, vol. 5, no. 2-3, pp. 195–196, 1991. View at Google Scholar · View at Scopus
  77. M. Inoue, C. Oishi, Y. Shimajiri, M. Furuta, M. Ueyama, and T. Sanke, “Clinical usefulness of measurement of urine type IV collagen for detection of early phase of nephropathy in type 2 diabetic patients,” Rinsho Byori, vol. 56, no. 7, pp. 564–569, 2008. View at Google Scholar · View at Scopus
  78. R. Kikkawa, M. Togawa, M. Isono, K. Isshiki, and M. Haneda, “Mechanism of the progression of diabetic nephropathy to renal failure,” Kidney International, vol. 51, no. 62, pp. S39–S40, 1997. View at Google Scholar · View at Scopus
  79. P. Sthaneshwar and S. P. Chan, “Urinary type IV collagen levels in diabetes mellitus,” Malaysian Journal of Pathology, vol. 32, no. 1, pp. 43–47, 2010. View at Google Scholar · View at Scopus
  80. T. Watanabe, K. Negishi, S. Katayama, J. Ishii, and S. Kawazu, “Serum or urinary concentration of type IV collagen in diabetics,” Journal of Diabetic Complications, vol. 5, no. 2-3, pp. 191–192, 1991. View at Google Scholar · View at Scopus
  81. N. Kotajima, Y. Fukumura, K. Obata, and I. Kobayashi, “The significance of determination of urinary type IV collagen concentrations from a random urine collection in patients with non-insulin dependent diabetes mellitus,” Rinsho Byori, vol. 46, no. 3, pp. 277–282, 1998. View at Google Scholar · View at Scopus
  82. Y. Tomino, S. Suzuki, C. Azushima et al., “Asian multicenter trials on urinary type IV collagen in patients with diabetic nephropathy,” Journal of Clinical Laboratory Analysis, vol. 15, no. 4, pp. 188–192, 2001. View at Publisher · View at Google Scholar · View at Scopus
  83. M. Yagame, D. Suzuki, K. Jinde et al., “Significance of urinary type IV collagen in patients with diabetic nephropathy using a highly sensitive one-step sandwich enzyme immunoassay,” Journal of Clinical Laboratory Analysis, vol. 11, no. 2, pp. 110–116, 1997. View at Publisher · View at Google Scholar · View at Scopus
  84. T. Iijima, S. Suzuki, K. Sekizuka et al., “Follow-up study on urinary type IV collagen in patients with early stage diabetic nephropathy,” Journal of Clinical Laboratory Analysis, vol. 12, no. 6, pp. 378–382, 1998. View at Publisher · View at Google Scholar · View at Scopus
  85. M. P. Cohen, G. T. Lautenslager, and C. W. Shearman, “Increased collagen IV excretion in diabetes: a marker of compromised filtration function,” Diabetes Care, vol. 24, no. 5, pp. 914–918, 2001. View at Google Scholar · View at Scopus
  86. M. Nishimura, T. Sasaki, A. Ohishi et al., “Angiotensin-converting enzyme inhibitors and probucol suppress the time-dependent increase in urinary Type IV collagen excretion of Type II diabetes mellitus patients with early diabetic nephropathy,” Clinical Nephrology, vol. 56, no. 2, pp. 96–103, 2001. View at Google Scholar · View at Scopus
  87. V. Woo, L. S. Ni, D. Hak et al., “Effects of losartan on urinary secretion of extracellular matrix and their modulators in type 2 diabetes mellitus patients with microalbuminuria,” Clinical and Investigative Medicine, vol. 29, no. 6, pp. 365–372, 2006. View at Google Scholar · View at Scopus
  88. M. Takahashi, “Increased urinary fibronectin excretion in type II diabetic patients with microalbuminuria,” Japanese Journal of Nephrology, vol. 37, no. 6, pp. 336–342, 1995. View at Google Scholar
  89. J. A. Fagerudd, P. H. Groop, E. Honkanen, A. M. Teppo, and C. Gronhagen-Riska, “Urinary excretion of TGF-β1, PDGF-BB and fibronectin in insulin- dependent diabetes mellitus patients,” Kidney International, vol. 51, no. 63, pp. S195–S197, 1997. View at Google Scholar · View at Scopus
  90. M. Kanauchi, H. Nishioka, T. Hashimoto, and K. Dohi, “Diagnostic significance of urinary transferrin in diabetic nephropathy,” Nippon Jinzo Gakkai shi, vol. 37, no. 11, pp. 649–654, 1995. View at Google Scholar · View at Scopus
  91. K. Kuboki, H. Tada, K. Shin, Y. Oshima, and S. Isogai, “Relationship between urinary excretion of fibronectin degradation products and proteinuria in diabetic patients, and their suppression after continuous subcutaneous heparin infusion,” Diabetes Research and Clinical Practice, vol. 21, no. 1, pp. 61–66, 1993. View at Publisher · View at Google Scholar · View at Scopus
  92. C. Nakajima, N. Shimojo, K. I. Naka, K. Okuda, M. Yamamoto, and S. Fujii, “Clinical significance of urinary laminin P1 in diabetic patients,” Journal of Diabetic Complications, vol. 5, no. 2-3, pp. 197–198, 1991. View at Google Scholar · View at Scopus
  93. H. Miyake, K. Nagashima, H. Yagi, and K. Onigata, “Urinary laminin P1 as an index of glycemic control in children with insulin-dependent diabetes mellitus,” Diabetes Research, vol. 23, no. 3, pp. 131–138, 1993. View at Google Scholar · View at Scopus
  94. C. Hansen, A. K. Irmscher, K. Kuhlemann, J. Beyer, and G. Kahaly, “Insulin-dependent diabetes mellitus and glycosaminoglycans,” Hormone and Metabolic Research, vol. 27, no. 12, pp. 555–558, 1995. View at Google Scholar · View at Scopus
  95. J. P. H. Shield, M. Carradus, J. E. Stone, L. P. Hunt, J. D. Baum, and C. A. Pennock, “Urinary heparan sulphate proteoglycan excretion is abnormal in insulin dependent diabetes,” Annals of Clinical Biochemistry, vol. 32, no. 6, pp. 557–560, 1995. View at Google Scholar · View at Scopus
  96. D. Juretić, V. Krajnović, and J. Lukac-Bajalo, “Altered distribution of urinary glycosaminoglycans in diabetic subjects,” Acta Diabetologica, vol. 39, no. 3, pp. 123–128, 2002. View at Publisher · View at Google Scholar
  97. A. Singh, V. Friden, I. Dasgupta et al., “High glucose causes dysfunction of the human glomerular endothelial glycocalyx,” American Journal of Physiology, vol. 300, no. 1, pp. F40–F48, 2011. View at Publisher · View at Google Scholar
  98. M. Nieuwdorp, H. L. Mooij, J. Kroon et al., “Endothelial glycocalyx damage coincides with microalbuminuria in type 1 diabetes,” Diabetes, vol. 55, no. 4, pp. 1127–1132, 2006. View at Publisher · View at Google Scholar · View at Scopus
  99. G. Kahaly, Ch. Hansen, E. Otto, G. Förster, J. Beyer, and G. Hommel, “Diabetic microangiopathy and urinary glycosaminoglycans,” Experimental and Clinical Endocrinology and Diabetes, vol. 105, no. 3, pp. 145–151, 1997. View at Google Scholar
  100. I. Ueta, K. Takamatsu, K. Hashimoto et al., “[Urinary glycosaminoglycans in patients with non-insulin-dependent diabetes mellitus, collagen diseases and IgA nephropathy],” Nihon Jinzo Gakkai shi, vol. 36, no. 2, pp. 138–145, 1994. View at Google Scholar
  101. O. Torffvit, “Urinary sulphated glycosaminoglycans and Tamm-Horsfall protein in type 1 diabetic patients,” Scandinavian Journal of Urology and Nephrology, vol. 33, no. 5, pp. 328–332, 1999. View at Publisher · View at Google Scholar · View at Scopus
  102. I. Ueta, K. Takamatsu, and K. Hashimoto, “[Urinary glycosaminoglycans in patients with incipient diabetic nephropathy],” Nihon Jinzo Gakkai shi, vol. 37, no. 1, pp. 17–23, 1995. View at Google Scholar
  103. N. Bonavita, P. Reed, and P. V. Donnelly, “The urinary excretion of heparin sulfate by juvenile- and adult-onset diabetic patients,” Connective Tissue Research, vol. 13, no. 1, pp. 83–87, 1984. View at Google Scholar
  104. Y. Budak, H. Demirci, M. Akdogan, and D. Yavuz, “Erythrocyte membrane anionic charge in type 2 diabetic patients with retinopathy,” BMC Ophthalmology, vol. 4, p. 14, 2004. View at Publisher · View at Google Scholar · View at Scopus
  105. P. de Muro, P. Fresu, M. Formato et al., “Urinary glycosaminoglycan and proteoglycan excretion in normoalbuminuric patients with type 1 diabetes mellitus,” Journal of Nephrology, vol. 15, no. 3, pp. 290–296, 2002. View at Google Scholar · View at Scopus
  106. A. E. Elbert, A. M. Paglione, J. C. Bragagnolo, H. A. Mainetti, C. D. Bonavita, and M. Ruiz, “Urinary heparan sulphate is increased in normoalbuminuric diabetic patients,” Medicina, vol. 60, no. 2, pp. 195–201, 2000. View at Google Scholar · View at Scopus
  107. A. V. McAuliffe, E. J. Fisher, S. V. McLennan, D. K. Yue, and J. R. Turtle, “Urinary clycosaminoglycan excretion in NIDDM subjects: its relationship to albuminura,” Diabetic Medicine, vol. 13, no. 8, pp. 758–763, 1996. View at Publisher · View at Google Scholar
  108. A. Popławska-Kita, B. Mierzejewska-Iwanowska, M. Szelachowska et al., “Glycosaminoglycans urinary excretion as a marker of the early stages of diabetic nephropathy and the disease progression,” Diabetes/Metabolism Research and Reviews, vol. 24, no. 4, pp. 310–317, 2008. View at Publisher · View at Google Scholar · View at Scopus
  109. G. Sindelka, J. Skrha, V. Stibor, and P. Stolba, “Glycosaminoglycans in urine of type 1 diabetic patients,” Sbornik Lekarsky, vol. 94, no. 1, pp. 77–80, 1993. View at Google Scholar · View at Scopus
  110. O. Yenice, H. Kazokoǧlu, E. Özcan et al., “Erythrocyte membrane anionic content and urinary glycosaminoglycan excretion in type 1 diabetes: association with retinopathy,” Current Eye Research, vol. 31, no. 11, pp. 975–981, 2006. View at Publisher · View at Google Scholar · View at Scopus
  111. O. Ellina, A. Chatzigeorgiou, S. Kouyanou et al., “Extracellular matrix-associated (GAGs, CTGF), angiogenic (VEGF) and inflammatory factors (MCP-1, CD40, IFN-γ) in type 1 diabetes mellitus nephropathy,” Clinical chemistry and laboratory medicine: CCLM / FESCC, vol. 50, no. 1, pp. 167–174, 2012. View at Publisher · View at Google Scholar
  112. P. Mahadevan, R. G. Larkins, J. R. E. Fraser, A. J. Fosang, and M. E. Dunlop, “Increased hyaluronan production in the glomeruli from diabetic rats: a link between glucose-induced prostaglandin production and reduced sulphated proteoglycan,” Diabetologia, vol. 38, no. 3, pp. 298–305, 1995. View at Publisher · View at Google Scholar · View at Scopus
  113. M. J. Burne, T. M. Osicka, and W. D. Comper, “Fractional clearance of high molecular weight proteins in conscious rats using a continuous infusion method,” Kidney International, vol. 55, no. 1, pp. 261–270, 1999. View at Publisher · View at Google Scholar · View at Scopus
  114. T. Narita, H. Sasaki, M. Hosoba et al., “Parallel Increase in Urinary Excretion Rates of Immunoglobulin G, Ceruloplasmin, Transferrin, and Orosomucoid in Normoalbuminuric Type 2 Diabetic Patients,” Diabetes Care, vol. 27, no. 5, pp. 1176–1181, 2004. View at Publisher · View at Google Scholar · View at Scopus
  115. T. Narita, H. Fujita, J. Koshimura et al., “Glycemic control reverses increases in urinary excretions of immunoglobulin G and ceruloplasmin in type 2 diabetic patients with normoalbuminuria,” Hormone and Metabolic Research, vol. 33, no. 6, pp. 370–378, 2001. View at Publisher · View at Google Scholar · View at Scopus
  116. O. Bakoush, J. Tencer, J. Tapia, B. Rippe, and O. Torffvit, “Higher urinary IgM excretion in type 2 diabetic nephropathy compared to type 1 diabetic nephropathy,” Kidney International, vol. 61, no. 1, pp. 203–208, 2002. View at Publisher · View at Google Scholar · View at Scopus
  117. I. Yashima, T. Hirayama, H. Shiiki, M. Kanauchi, and K. Dohi, “[Diagnostic significance of urinary immunoglobulin G in diabetic nephropathy],” Nihon Jinzo Gakkai shi, vol. 41, no. 8, pp. 787–796, 1999. View at Google Scholar
  118. H. J. Bangstad, A. Kofoed-Enevoldsen, K. Dahl-Jorgensen, and K. F. Hanssen, “Glomerular charge selectivity and the influence of improved blood glucose control in Type 1 (insulin-dependent) diabetic patients with microalbuminuria,” Diabetologia, vol. 35, no. 12, pp. 1165–1169, 1992. View at Publisher · View at Google Scholar · View at Scopus
  119. S. Gambardella, S. Morano, A. Cancelli et al., “Urinary IgG4: an additional parameter in characterizing patients with incipient diabetic nephropathy,” Diabetes Research, vol. 10, no. 4, pp. 153–157, 1989. View at Google Scholar
  120. U. di Mario, S. Morano, A. Cancelli et al., “New parameters to monitor the progression of diabetic nephropathy,” American Journal of Kidney Diseases, vol. 13, no. 1, pp. 45–48, 1989. View at Google Scholar
  121. G. Cristina and G. M. De Matteis, “Early indicators of diabetic nephropathy. Changes in selective proteinuria,” Recenti Progressi in Medicina, vol. 85, no. 11, pp. 540–545, 1994. View at Google Scholar · View at Scopus
  122. T. Deckert, B. Feldt-Rasmussen, R. Djurup, and M. Deckert, “Glomerular size and charge selectivity in insulin-dependent diabetes mellitus,” Kidney International, vol. 33, no. 1, pp. 100–106, 1988. View at Google Scholar · View at Scopus
  123. S. Morano, A. Cancelli, S. Bacci et al., “The selective elimination of anionic immunoglobulins as a parameter of kidney damage in diabetes and diabetic pregnancy,” Journal of Diabetic Complications, vol. 2, no. 1, pp. 2–4, 1988. View at Google Scholar · View at Scopus
  124. Y. Chiba, N. Tani, M. Yamazaki, H. Nakamura, S. Ito, and A. Shibata, “Glomerular charge selectivity in non-insulin-dependent diabetes mellitus,” Journal of Diabetic Complications, vol. 5, no. 2-3, pp. 135–137, 1991. View at Google Scholar · View at Scopus
  125. P. M. Hansen, E. R. Mathiesen, A. Kofoed-Enevoldsen, and T. Deckert, “Possible effect of angiotensin-converting enzyme inhibition on glomerular charge selectivity,” Journal of Diabetes and its Complications, vol. 9, no. 3, pp. 158–162, 1995. View at Publisher · View at Google Scholar · View at Scopus
  126. M. Yamazaki, S. Ito, A. Usami et al., “Urinary excretion rate of ceruloplasmin in non-insulin-dependent diabetic patients with different stages of nephropathy,” European Journal of Endocrinology, vol. 132, no. 6, pp. 681–687, 1995. View at Google Scholar
  127. H. Shi, J. Fang, Y. Yang et al., “The clinical significance of detection of urinary ceruloplasmin in type 2 diabetes,” Zhonghua nei ke za zhi, vol. 40, no. 12, pp. 823–825, 2001. View at Google Scholar · View at Scopus
  128. L.-X. Qin, X. Zeng, and G. Huang, “Changes in serum and urine ceruloplasmin concentrations in type 2 diabetes,” Zhong nan da xue xue bao, vol. 29, no. 2, pp. 208–211, 2004. View at Google Scholar · View at Scopus
  129. M. Ogawa, N. Hirawa, T. Tsuchida et al., “Urinary excretions of lipocalin-type prostaglandin D2 synthase predict the development of proteinuria and renal injury in OLETF rats,” Nephrology Dialysis Transplantation, vol. 21, no. 4, pp. 924–934, 2006. View at Publisher · View at Google Scholar
  130. Y. Uehara, H. Makino, K. Seiki, and Y. Urade, “Urinary excretions of lipocalin-type prostaglandin D synthase predict renal injury in type-2 diabetes: a cross-sectional and prospective multicentre study,” Nephrology Dialysis Transplantation, vol. 24, no. 2, pp. 475–482, 2009. View at Publisher · View at Google Scholar
  131. K. Hamano, Y. Totsuka, M. Ajima et al., “Blood sugar control reverses the increase in urinary excretion of prostaglandin D synthase in diabetic patients,” Nephron, vol. 92, no. 1, pp. 77–85, 2002. View at Publisher · View at Google Scholar · View at Scopus
  132. N. Hirawa, Y. Uehara, T. Ikeda et al., “Urinary prostaglandin D synthase (β-trace) excretion increases in the early stage of diabetes mellitus,” Nephron, vol. 87, no. 4, pp. 321–327, 2001. View at Publisher · View at Google Scholar · View at Scopus
  133. R. Yoshikawa, J. Wada, K. Seiki et al., “Urinary PGDS levels are associated with vascular injury in type 2 diabetes patients,” Diabetes Research and Clinical Practice, vol. 76, no. 3, pp. 358–367, 2007. View at Publisher · View at Google Scholar · View at Scopus
  134. O. Bakoush, O. Torffvit, B. Rippe, and J. Tencer, “High proteinuria selectivity index based upon IgM is a strong predictor of poor renal survival in glomerular diseases,” Nephrology Dialysis Transplantation, vol. 16, no. 7, pp. 1357–1363, 2001. View at Google Scholar
  135. R. Tofik, O. Torffvit, B. Rippe, and O. Bakoush, “Increased urine IgM excretion predicts cardiovascular events in patients with type I diabetes nephropathy,” BMC Medicine, vol. 7, p. 39, 2009. View at Publisher · View at Google Scholar · View at Scopus
  136. O. Bakoush, O. Torffvit, B. Rippe, and J. Tencer, “Renal function in proteinuric glomerular diseases correlates to the changes in urine IgM excretion but not to the changes in the degree of albuminuria,” Clinical Nephrology, vol. 59, no. 5, pp. 345–352, 2003. View at Google Scholar · View at Scopus
  137. O. Bakoush, M. Segelmark, O. Torffvit, S. Ohlsson, and J. Tencer, “Urine IgM excretion predicts outcome in ANCA-associated renal vasculitis,” Nephrology Dialysis Transplantation, vol. 21, no. 5, pp. 1263–1269, 2006. View at Publisher · View at Google Scholar
  138. R. Tofik, O. Torffvit, B. Rippe, and O. Bakoush, “Urine IgM-excretion as a prognostic marker for progression of type 2 diabetic nephropathy,” Diabetes Research and Clinical Practice, vol. 95, no. 1, pp. 139–144, 2012. View at Publisher · View at Google Scholar