Table of Contents Author Guidelines Submit a Manuscript
International Journal of Nephrology
Volume 2012, Article ID 427060, 6 pages
http://dx.doi.org/10.1155/2012/427060
Review Article

Is There a Role for Mammalian Target of Rapamycin Inhibition in Renal Failure due to Mesangioproliferative Nephrotic Syndrome?

Division of Nephrology, Department of Medicine, Hospital Británico de Buenos Aires, 1280 Buenos Aires, Argentina

Received 5 January 2012; Revised 16 February 2012; Accepted 22 March 2012

Academic Editor: Claudio Bazzi

Copyright © 2012 Hernán Trimachi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. United States Renal Data System, Annual Data Report, vol. 1, chapter 1, 2011.
  2. J. Floege, “Evidence-based recommendations for immunosuppression in IgA nephropathy: handle with caution,” Nephrology Dialysis Transplantation, vol. 18, no. 2, pp. 241–245, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. B. A. Julian and J. Novak, “IgA nephropathy: an update,” Current Opinion in Nephrology and Hypertension, vol. 13, no. 2, pp. 171–179, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. G. D’Amico, E. Imbasciati, G. Barbiano di Belgiojoso et al., “Idiopathic IgA mesangial nephropathy. Clinico-histologic study in 374 patients,” Medicine, vol. 64, pp. 49–57, 1985. View at Google Scholar
  5. D. Goumenas, M. Ahuja, J. Shortland, and C. Brown, “Can immunosuppressive drugs slow down the progression of IgA nephropathy?” Nephrology Dialysis Transplantation, vol. 10, pp. 1173–1181, 1995. View at Google Scholar
  6. E. Alamartine, J. C. Sabatier, C. Guerin, J. M. Berliet, and F. Berthoux, “Prognostic factors in mesangial IgA glomerulonephritis: an extensive study with univariate and multivariate analyses,” American Journal of Kidney Diseases, vol. 18, no. 1, pp. 12–19, 1991. View at Google Scholar · View at Scopus
  7. O. Bogenschutz, A. Bohle, C. Batz et al., “IgA nephritis: on the importance of morphological and clinical parameters in the long-term prognosis of 239 patients,” American Journal of Nephrology, vol. 10, no. 2, pp. 137–147, 1990. View at Google Scholar · View at Scopus
  8. J. S. Cameron, “The long-term outcome of glomerular disease,” in Diseases of the Kidney, R. Schrier and C. Gottschalk, Eds., pp. 1914–1916, Little Brown, Boston, Mass, USA, 5th edition, 1993. View at Google Scholar
  9. R. Glassock, A. Cohen, and S. Adler, “Primary glomerular disease,” in The Kidney, B. Brenner, Ed., pp. 1414–1421, W.B. Saunders, Philadelphia, Pa, USA, 5th edition, 1995. View at Google Scholar
  10. C. Ponticelli and R. Glassock, “Other primary glomerular diseases,” in Primary Glomerular Diseases, C. Ponticelli and R. Glassock, Eds., pp. 453–460, Oxford University Press, Oxford, UK, 2nd edition, 2009. View at Google Scholar
  11. W. A. Border and N. A. Noble, “Transforming growth factor β in tissue fibrosis,” New England Journal of Medicine, vol. 331, no. 19, pp. 1286–1292, 1994. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Klahr, G. Schreiner, and I. Ichikawa, “The progression of renal disease,” New England Journal of Medicine, vol. 318, no. 25, pp. 1657–1666, 1988. View at Google Scholar · View at Scopus
  13. S. Kramer, T. Loof, S. Martini et al., “Mycophenolate mofetil slows progression in anti-thy1-induced chronic renal fibrosis, but is not additive to a high dose of enalapril,” American Journal of Physiology, vol. 289, pp. F359–F368, 2005. View at Google Scholar
  14. G. Remuzzi and T. Bertani, “Pathophysiology of progressive nephropathies,” New England Journal of Medicine, vol. 339, no. 20, pp. 1448–1456, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Wolf and E. Ritz, “Combination therapy with ACE inhibitors and angiotensin II receptor blockers to halt progression of chronic renal disease: pathophysiology and indications,” Kidney International, vol. 67, no. 3, pp. 799–812, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Floege and F. Eitner, “Current therapy for IgA nephropathy,” Journal of the American Society of Nephrology, vol. 22, pp. 1785–1794, 2011. View at Google Scholar
  17. W. Schuler, R. Sedrani, S. Cottens et al., “SDZ RAD, a new rapamycin derivative: pharmacological properties in vitro and in vivo,” Transplantation, vol. 64, no. 1, pp. 36–42, 1997. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Pascual, A. M. Fernandez, R. Marcen et al., “Conversion to everolimus in a patient with arterial hypertension and recurrent cutaneous neoplasia–a case report,” Nephrology Dialysis Transplantation, vol. 11, supplement 3, pp. iii38–iii41, 2006. View at Google Scholar
  19. J. Pascual, “Everolimus in clinical practice—renal transplantation,” Nephrology Dialysis Transplantation, vol. 21, supplement 3, pp. iii18–iii23, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Nashan, “Review of the proliferation ihibitor everolimus,” Expert Opinion on Investigational Drugs, vol. 11, no. 12, pp. 1845–1857, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Meyrier, “Treatment of focal segmental glomerulosclerosis,” Expert Opinion on Pharmacotherapy, vol. 6, no. 9, pp. 1539–1549, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. M. E. Cho, J. K. Hurley, and J. B. Kopp, “Sirolimus therapy of focal segmental glomerulosclerosis is associated with nephrotoxicity,” American Journal of Kidney Diseases, vol. 49, no. 2, pp. 310–317, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. F. C. Fervenza, P. M. Fitzpatrick, J. Mertz et al., “Acute rapamycin nephrotoxicity in native kidneys of patients with chronic glomerulopathies,” Nephrology Dialysis Transplantation, vol. 19, pp. 1288–1292, 2004. View at Google Scholar
  24. R. Ramadan, D. Faour, H. Awad et al., “Early treatment with everolimus exetrs renoprotective effects in rats with adraimycin-induced nephrotic syndrome,” Nephrology Dialysis Transplantation. In press.
  25. Y. X. Su, H. C. Deng, M. X. Zhang, J. Long, and Z. G. Peng, “Adiponectin inhibits PDGF-induced mesangial cell proliferation: regulation of mammalian target of rapamycin-mediated survival pathway by adenosine 5-monophosphate-activated protein kinase,” Hormone and Metabolic Research, vol. 44, pp. 21–27, 2012. View at Google Scholar
  26. J. Floege, E. Eng, B. A. Young et al., “Infusion of platelet-derived growth factor or basic fibroblast growth factor induces selective glomerular mesangial cell proliferation and matrix accumulation in rats,” Journal of Clinical Investigation, vol. 92, no. 6, pp. 2952–2962, 1993. View at Google Scholar · View at Scopus
  27. P. Boor, F. Eitner, C. D. Cohen et al., “Patients with IgA nephropathy exhibit high systemic PDGF-DD levels,” Nephrology Dialysis Transplantation, vol. 24, pp. 2755–2762, 2009. View at Google Scholar
  28. N. Ouchi, H. Kobayashi, S. Kihara et al., “Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells,” Journal of Biological Chemistry, vol. 279, no. 2, pp. 1304–1309, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Hattori, S. Hattori, K. Akimoto et al., “Globular adiponectin activates nuclear factor-κB and activating protein-1 and enhances angiotensin II-induced proliferation in cardiac fibroblasts,” Diabetes, vol. 56, no. 3, pp. 804–808, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Połowinczak-Przybyłek and G. Mełeń-Mucha, “The inhibitory influence of adiponectin on the growth of the murine endothelial cell line HECa 10 in vitro,” Endokrynologia Polska, vol. 60, no. 3, pp. 166–171, 2009. View at Google Scholar · View at Scopus
  31. Y. Wang, K. S. L. Lam, J. Y. Xu et al., “Adiponectin inhibits cell proliferation by interacting with several growth factors in an oligomerization-dependent manner,” Journal of Biological Chemistry, vol. 280, no. 18, pp. 18341–18347, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Shimotomai, M. Kakei, T. Narita et al., “Enhanced urinary adiponectin excretion in IgA-nephropathy patients with proteinuria,” Renal Failure, vol. 27, no. 3, pp. 323–328, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. N. J. Brunskill, “Rapamycin: a new string to the antiproteinuric bow?” Journal of the American Society of Nephrology, vol. 16, no. 7, pp. 1878–1879, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Liu, “Rapamycin and chronic kidney disease: beyond the inhibition of inflammation,” Kidney International, vol. 69, no. 11, pp. 1925–1927, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. D. D. Sarbassov, S. M. Ali, and D. M. Sabatini, “Growing roles for the mTOR pathway,” Current Opinion in Cell Biology, vol. 17, no. 6, pp. 596–603, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Krämer, Y. Wang-Rosenke, V. Scholl et al., “Low-dose mTOR inhibition by rapamycin attenuates progression in anti-thy1-induced chronic glomerulosclerosis of the rat,” American Journal of Physiology, vol. 294, no. 2, pp. F440–F449, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. H. R. Lock, S. H. Sacks, and M. G. Robson, “Rapamycin at subimmunosuppressive levels inhibits mesangial cell proliferation and extracellular matrix production,” American Journal of Physiology, vol. 292, no. 1, pp. F76–F81, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. R. G. B. Bonegio, R. Fuhro, Z. Wang et al., “Rapamycin ameliorates proteinuria-associated tubulointerstitial inflammation and fibrosis in experimental membranous nephropathy,” Journal of the American Society of Nephrology, vol. 16, no. 7, pp. 2063–2072, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. J. K. Chen, J. Chen, E. G. Neilson, and R. C. Harris, “Role of mammalian target of rapamycin signaling in compensatory renal hypertrophy,” Journal of the American Society of Nephrology, vol. 16, no. 5, pp. 1384–1391, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. F. Diekmann, J. Rovira, J. Carreras et al., “Mammalian target of rapamycin inhibition halts progression of proteinuria in a rat model of reduced renal mass,” Journal of the American Society of Nephrology, vol. 18, pp. 2653–2660, 2007. View at Google Scholar
  41. N. Lloberas, J. M. Cruzado, M. Franquesa et al., “Mammalian target of rapamycin pathway blockade slows progression of diabetic kidney disease in rats,” Journal of the American Society of Nephrology, vol. 17, no. 5, pp. 1395–1404, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Tao, J. Kim, R. W. Schrier, and C. L. Edelstein, “Rapamycin markedly slows disease progression in a rat model of polycystic kidney disease,” Journal of the American Society of Nephrology, vol. 16, no. 1, pp. 46–51, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. M. J. Wu, M. C. Wen, Y. T. Chiu, Y. Y. Chiou, K. H. Shu, and M. J. Tang, “Rapamycin attenuates unilateral ureteral obstruction-induced renal fibrosis,” Kidney International, vol. 69, no. 11, pp. 2029–2036, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Daniel, L. Renders, K. Amann, E. Schulze-Lohoff, I. A. Hauser, and C. Hugo, “Mechanisms of everolimus-induced glomerulosclerosis after glomerular injury in the rat,” American Journal of Transplantation, vol. 5, no. 12, pp. 2849–2861, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. C. Daniel, R. Ziswiler, B. Frey, M. Pfister, and H. P. Marti, “Proinflammatory effects in experimental mesangial proliferative glomerulonephritis of the immunosuppressive agent SDZ RAD, a rapamycin derivative,” Experimental Nephrology, vol. 8, no. 1, pp. 52–62, 2000. View at Google Scholar · View at Scopus
  46. V. Eremina, H. J. Baelde, and S. E. Quaggin, “Role of the VEGF-A signaling pathway in the glomerulus: evidence for crosstalk between components of the glomerular filtration barrier,” Nephron Physiology, vol. 106, no. 2, pp. p32–p37, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. N. Ferrara, H. P. Gerber, and J. LeCouter, “The biology of VEGF and its receptors,” Nature Medicine, vol. 9, no. 6, pp. 669–676, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. B. F. Schrijvers, A. Flyvbjerg, and A. S. De Vriese, “The role of vascular endothelial growth factor (VEGF) in renal pathophysiology,” Kidney International, vol. 65, no. 6, pp. 2003–2017, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. E. Chou, I. Suzuma, K. J. Way et al., “Decreased cardiac expression of vascular endothelial growth factor and its receptors in insulin-resistant and diabetic states: a possible explanation for impaired collateral formation in cardiac tissue,” Circulation, vol. 105, no. 3, pp. 373–379, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. K. M. Chow, C. C. Szeto, F. M. Lai, P. Poon, T. Y. Wong, and P. K. Li, “Genetic polymorphism of vascular endothelial growth factor: impact on progression of IgA nephropathy,” Ren Fail, vol. 28, pp. 15–20, 2006. View at Google Scholar
  51. B. Robert, X. Zhao, and D. R. Abrahamson, “Coexpression of neuropilin-1, Flk1, and VEGF164 in developing and mature mouse kidney glomeruli,” American Journal of Physiology, vol. 279, no. 2, pp. F275–F282, 2000. View at Google Scholar · View at Scopus
  52. K. Noguchi, N. Yoshikawa, S. Ito-Kariya et al., “Activated mesangial cells produce vascular permeability factor in early- stage mesangial proliferative glomerulonephritis,” Journal of the American Society of Nephrology, vol. 9, no. 10, pp. 1815–1825, 1998. View at Google Scholar · View at Scopus
  53. H. P. Gerber, A. McMurtrey, J. Kowalski et al., “Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol PI3-kinase/Akt signal transduction pathway: requirement for Flk-1/KDR activation,” Journal of Biological Chemistry, vol. 273, no. 46, pp. 30336–30343, 1998. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Karar and A. Maity, “PI3K/AKT/mTORpathwayinangiogenesis,” Frontiers in Molecular Neuroscience, vol. 4, pp. 1–8, 2011. View at Google Scholar
  55. J. A. Tumlin, D. Miller, M. Near, S. Selvaraj, R. Hennigar, and A. Guasch, “A prospective, open-label trial of sirolimus in the treatment of focal segmental glomerulosclerosis,” Clinical Journal of the American Society of Nephrology, vol. 1, no. 1, pp. 109–116, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. G. Tsagalis, E. Psimenou, A. Iliadis, L. Nakopoulou, and A. Laggouranis, “Rapamycin for focal segmental glomerulosclerosis: a report of 3cases,” American Journal of Kidney Diseases, vol. 54, no. 2, pp. 340–344, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. J. M. Cruzado, R. Poveda, M. Ibernon et al., “Low-dose sirolimus combined with angiotensin-converting enzyme inhibitor and statin stabilizes renal function and reduces glomerular proliferation in poor prognosis IgA nephropathy,” Nephrology Dialysis Transplantation, vol. 26, pp. 3596–3602, 2011. View at Google Scholar