Table of Contents Author Guidelines Submit a Manuscript
International Journal of Nephrology
Volume 2013, Article ID 681454, 7 pages
http://dx.doi.org/10.1155/2013/681454
Clinical Study

Impact of Peritoneal Dialysis Treatment on Arterial Stiffness and Vascular Changes in Diabetic Type 2 and Nondiabetic Patients with End-Stage Renal Disease

1Clinic for Nephrology, Clinical Center of Sarajevo University, Bolnička 25, 71000 Sarajevo, Bosnia and Herzegovina
2Faculty of Medicine, University of Sarajevo, Čekaluša 90, 71000 Sarajevo, Bosnia and Herzegovina

Received 11 July 2013; Revised 6 September 2013; Accepted 7 September 2013

Academic Editor: Jaime Uribarri

Copyright © 2013 Damir Rebić et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. H. Chung, D. C. Han, H. Noh et al., “Risk factors for mortality in diabetic peritoneal dialysis patients,” Nephrology, Dialysis, Transplantation, vol. 25, no. 11, pp. 3742–3748, 2010. View at Google Scholar · View at Scopus
  2. E. Villar, L. Remontet, M. Labeeuw, and R. Ecochard, “Effect of age, gender, and diabetes on excess death in end-stage renal failure,” Journal of the American Society of Nephrology, vol. 18, no. 7, pp. 2125–2134, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. M. A. Schroijen, O. M. Dekkers, D. C. Grootendorst et al., “Survival in dialysis patients is not different between patients with diabetes as primary renal disease and patients with diabetes as a co-morbid condition,” BMC Nephrology, vol. 12, no. 1, article 69, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. R. T. Krediet and O. Balafa, “Cardiovascular risk in the peritoneal dialysis patient,” Nature Reviews Nephrology, vol. 6, no. 8, pp. 451–460, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Prasad, S. Kumar, A. Singh et al., “Carotid intimal thickness and flow-mediated dilatation in diabetic and nondiabetic continuous ambulatory peritoneal dialysis patients,” Peritoneal Dialysis International, vol. 29, supplement 2, pp. S96–S101, 2009. View at Google Scholar · View at Scopus
  6. R. Pecoits-Filho, “The peritoneal cavity: a room with a view to the endothelium,” Peritoneal Dialysis International, vol. 25, no. 5, pp. 432–434, 2005. View at Google Scholar · View at Scopus
  7. E. García-López, J. J. Carrero, M. E. Suliman, B. Lindholm, and P. Stenvinkel, “Risk factors for cardiovascular disease in patients undergoing peritoneal dialysis,” Peritoneal Dialysis International, vol. 27, supplement 2, pp. S205–S209, 2007. View at Google Scholar · View at Scopus
  8. J. Blacher, A. P. Guerin, B. Pannier, S. J. Marchais, and G. M. London, “Arterial calcifications, arterial stiffness, and cardiovascular risk in end-stage renal disease,” Hypertension, vol. 38, no. 4, pp. 938–942, 2001. View at Google Scholar · View at Scopus
  9. F. M. Yilmaz, H. Akay, M. Duranay et al., “Carotid atherosclerosis and cardiovascular risk factors in hemodialysis and peritoneal dialysis patients,” Clinical Biochemistry, vol. 40, no. 18, pp. 1361–1366, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. P. E. Watson, I. D. Watson, and R. D. Batt, “Total body water volumes for adult males and females estimated from simple anthropometric measurements,” American Journal of Clinical Nutrition, vol. 33, no. 1, pp. 27–39, 1980. View at Google Scholar · View at Scopus
  11. S. H. Chung, W. S. Chu, H. A. Lee et al., “Peritoneal transport characteristics, comorbid diseases and survival in CAPD patients,” Peritoneal Dialysis International, vol. 20, no. 5, pp. 541–547, 2000. View at Google Scholar · View at Scopus
  12. B. Coll, A. Betriu, M. Martínez-Alonso et al., “Cardiovascular risk factors underestimate atherosclerotic burden in chronic kidney disease: usefulness of non-invasive tests in cardiovascular assessment,” Nephrology Dialysis Transplantation, vol. 25, no. 9, pp. 3017–3025, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. S. H. Han, S. C. Lee, E. W. Kang et al., “Reduced residual renal function is associated with endothelial dysfunction in patients receiving peritoneal dialysis,” Peritoneal Dialysis International, vol. 32, no. 2, pp. 149–158, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. H. A. R. Hadi and J. A. Suwaidi, “Endothelial dysfunction in diabetes mellitus,” Vascular Health and Risk Management, vol. 3, no. 6, pp. 853–876, 2007. View at Google Scholar · View at Scopus
  15. G. Yang, R. Lucas, R. Caldwell, L. Yao, M. Romero, and R. Caldwell, “Novel mechanisms of endothelial dysfunction in diabetes,” Journal of Cardiovascular Disease Research, vol. 1, no. 2, pp. 59–63, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Liu, Y. Peng, F. Liu et al., “Correlation between endothelin-1 and atherosclerosis in chronic hemodialysis patients,” Journal of Nephrology, vol. 23, no. 5, pp. 593–602, 2010. View at Google Scholar · View at Scopus
  17. B. P. Oberg, E. McMenamin, F. L. Lucas et al., “Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease,” Kidney International, vol. 65, no. 3, pp. 1009–1016, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Khaira, S. Mahajan, A. Kumar et al., “Oxidative stress, endothelial function, carotid artery intimal thickness and their correlates among chronic peritoneal dialysis patients,” Indian Journal of Nephrology, vol. 21, no. 4, pp. 264–269, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. A. S. Rodrigues, M. Almeida, I. Fonseca et al., “Peritoneal fast transport in incident peritoneal dialysis patients is not consistently associated with systemic inflammation,” Nephrology Dialysis Transplantation, vol. 21, no. 3, pp. 763–769, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Rodrigues, M. Martins, M. J. Santos et al., “Evaluation of effluent markers cancer antigen 125, vascular endothelial growth factor, and interleukin-6: relationship with peritoneal transport,” Advances in Peritoneal Dialysis, vol. 20, pp. 8–12, 2004. View at Google Scholar · View at Scopus
  21. J.-J. Mourad, B. Pannier, J. Blacher et al., “Creatinine clearance, pulse wave velocity, carotid compliance and essential hypertension,” Kidney International, vol. 59, no. 5, pp. 1834–1841, 2001. View at Publisher · View at Google Scholar · View at Scopus