Table of Contents
International Journal of Navigation and Observation
Volume 2009, Article ID 714508, 15 pages
Research Article

Naval Target Classification by Fusion of Multiple Imaging Sensors Based on the Confusion Matrix

1Analysis of Integrated Systems Unit, SELEX Sistemi Integrati, via Tiburtina Km 12,400, 00131 Roma, Italy
2Department of “Ingegneria dell'Informazione”, University of Pisa, via G. Caruso 16, 56122 Pisa, Italy

Received 14 July 2009; Accepted 12 December 2009

Academic Editor: Aleksandar Dogandzic

Copyright © 2009 S. Giompapa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


This paper presents an algorithm for the classification of targets based on the fusion of the class information provided by different imaging sensors. The outputs of the different sensors are combined to obtain an accurate estimate of the target class. The performance of each imaging sensor is modelled by means of its confusion matrix (CM), whose elements are the conditional error probabilities in the classification and the conditional correct classification probabilities. These probabilities are used by each sensor to make a decision on the target class. Then, a final decision on the class is made using a suitable fusion rule in order to combine the local decisions provided by the sensors. The overall performance of the classification process is evaluated by means of the “fused” confusion matrix, i.e. the CM pertinent to the final decision on the target class. Two fusion rules are considered: a majority voting (MV) rule and a maximum likelihood (ML) rule. A case study is then presented, where the developed algorithm is applied to three imaging sensors located on a generic air platform: a video camera, an infrared camera (IR), and a spotlight Synthetic Aperture Radar (SAR).