Table of Contents
International Journal of Navigation and Observation
Volume 2013, Article ID 302947, 11 pages
http://dx.doi.org/10.1155/2013/302947
Research Article

Benefit of the NeQuick Galileo Version in GNSS Single-Point Positioning

Department of Science and Technology, PArthenope Navigation Group (PANG), Parthenope University of Naples, Centro Direzionale di Napoli Isola C4, 80143 Naples, Italy

Received 31 May 2013; Revised 17 September 2013; Accepted 30 September 2013

Academic Editor: Yuei-An Liou

Copyright © 2013 Antonio Angrisano et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Hoffmann-Wellenhof, H. Lichtenegger, and J. Collins, Global Positioning System: Theory and Practice, Springer, Berlin, Germany, 1992.
  2. R. B. Langley, “Propagation of the GPS signals,” in GPS for Geodesy, A. Kleusberg and P. J. G. Teunissen, Eds., Springer, Berlin, Germany, 1998. View at Google Scholar
  3. J. A. Klobuchar, “Ionospheric effects on GPS,” in Global Positioning System: Theory and Applications, Vol. I, B. W. Parkinson and J. J. Spilker, Eds., pp. 485–515, American Institute of Aeronautics & Astronautics, 1996. View at Google Scholar
  4. J. Hargreaves, The Solar-Terrestrial Environment, Cambridge Atmospheric and Space Science Series, Cambridge University Press, 1992.
  5. A. G. Pavelyev, Y. A. Liou, K. Zhang et al., “Identification and localization of layers in the ionosphere using the eikonal and amplitude of radio occultation signals,” Atmospheric Measurement Techniques, vol. 5, no. 1, pp. 1–16, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. A. G. Pavelyev, Y. A. Liou, J. Wickert, K. Zhang, C. S. Wang, and Y. Kuleshov, “Analytical model of electromagnetic waves propagation and location of inclined plasma layers using occultation data,” Progress in Electromagnetics Research, vol. 106, pp. 177–202, 2010. View at Google Scholar · View at Scopus
  7. C. C. Lee, Y. A. Liou, Y. Otsuka et al., “Nighttime medium-scale traveling ionospheric disturbances detected by network GPS receivers in Taiwan,” Journal of Geophysical Research A, vol. 113, no. 12, Article ID A12316, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. A. G. Pavelyev, Y. A. Liou, J. Wickert, T. Schmidt, A. A. Pavelyev, and S. F. Liu, “Effects of the ionosphere and solar activity on radio occultation signals: application to CHAllenging Minisatellite Payload satellite observations,” Journal of Geophysical Research A, vol. 112, no. 6, Article ID A06326, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Blaunstein and E. Plohotniuc, Ionosphere and Applied Aspects of Radio Communication and Radar, CRC Press, Taylor & Francis, 2008.
  10. A. Angrisano, S. Gaglione, C. Gioia, M. Massaro, and U. Robustelli, “Assessment of NeQuick Ionospheric model for Galileo single-frequency users,” Acta Geophysicano, vol. 61, no. 6, pp. 1457–1476, 2013. View at Publisher · View at Google Scholar
  11. J. A. Klobuchar, “Ionospheric time-delay algorithm for single-frequency GPS users,” IEEE Transactions on Aerospace and Electronic Systems, vol. 23, no. 3, pp. 325–331, 1987. View at Google Scholar · View at Scopus
  12. G. Di Giovanni and S. M. Radicella, “An analytical model of the electron density profile in the ionosphere,” Advances in Space Research, vol. 10, no. 11, pp. 27–30, 1990. View at Google Scholar · View at Scopus
  13. G. Hochegger, B. Nava, S. Radicella, and R. Leitinger, “A family of ionospheric models for different uses,” Physics and Chemistry of the Earth, Part C, vol. 25, no. 4, pp. 307–310, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. S. M. Radicella and R. Leitinger, “The evolution of the DGR approach to model electron density profiles,” Advances in Space Research, vol. 27, no. 1, pp. 35–40, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. S. M. Radicella and M. L. Zhang, “The improved DGR analytical model of electron density height profile and total electron content in the ionosphere,” Annals of Geophysics, vol. 38, no. 1, pp. 35–41, 1995. View at Publisher · View at Google Scholar
  16. A. Angrisano, S. Gaglione, and C. Gioia, “Performance assessment of aided global navigation satellite system for land navigation,” IET Radar, Sonar and Navigation, vol. 7, pp. 671–680, 2013. View at Publisher · View at Google Scholar
  17. G. Petit and B. Luzum, “IERS conventions,” in IERS Technical Note No. 36, G. Petit and B. Luzum, Eds., pp. 137–150, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt, Germany, 2010. View at Google Scholar
  18. R. B. Bent and S. K. Llewllyn, “Documentation and description of the bent ionospheric model,” SAMSO Technical Report 73-252, 1973. View at Google Scholar
  19. R. Leitinger, M.-L. Zhang, and S. M. Radicella, “An improved bottomside for the ionospheric electron density model NeQuick,” Annals of Geophysics, vol. 48, no. 3, pp. 525–534, 2005. View at Google Scholar · View at Scopus
  20. B. Arbesser-Rastburg, “The Galileo single frequency ionospheric correction algorithm,” in Proceedings of the 3rd European Space Weather Week, Brussels, Belgium, 2006.
  21. B. Nava, P. Coïsson, G. Miró Amarante, F. Azpilicueta, and S. M. Radicella, “A model assisted ionospheric electron density reconstruction method based on vertical TEC data ingestion,” Annals of Geophysics, vol. 48, no. 2, pp. 313–320, 2005. View at Google Scholar · View at Scopus
  22. P. Coïsson, S. M. Radicella, R. Leitinger, and B. Nava, “Topside electron density in IRI and NeQuick: features and limitations,” Advances in Space Research, vol. 37, no. 5, pp. 937–942, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. S. M. Radiceila, “The NeQuick model genesis, uses and evolution,” Annals of Geophysics, vol. 52, no. 3-4, pp. 417–422, 2009. View at Google Scholar · View at Scopus
  24. B. Nava, P. Coïsson, and S. M. Radicella, “A new version of the NeQuick ionosphere electron density model,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 70, no. 15, pp. 1856–1862, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. B. Bidaine, Ionosphere modelling for Galileo single frequency users [Ph.D. thesis], University of Liège, Liège, Belgium, 2012.
  26. F. Azpilicueta, P. Coïsson, B. Nava, C. Brunini, and S. M. Radicella, “Optimized NeQuick ionospheric model for point positioning,” in Proceedings of International Symposium on GPS/GNSS, pp. 15–18, Tokyo, Japan, November 2003.
  27. SIS-ICD, Galileo Open Service, Signal in Space Interface Control Document, 2006, SISICD-2006. European Space Agency.
  28. A. Aragón-Ángel, R. Orús, M. Hernández-Pajares, J. M. Juan, and J. Sanz, “Preliminary NeQuick assessment for future single frequency users of Galileo,” in Proceedings of the 6th Geomatic Week, Barcelona, Spain, 2006.
  29. R. P. Brent, Algorithms for Minimization without Derivatives, Prentice-Hall, Englewood Cliffs, NJ, USA, 1973.
  30. S. M. Radicella, B. Nava, and P. Coïsson, “Ionospheric models for GNSS single frequency range delay corrections,” Física de la Tierra, vol. 20, pp. 27–39, 2008. View at Google Scholar
  31. S. Schaer and W. Gurtner, “IONEX: the IONosphere map exchange, format version 1,” in Proceedings of the IGS AC Workshop, Darmstadt, Germany, February 1998.
  32. B. Nava, S. M. Radicella, and F. Azpilicueta, “Data ingestion into NeQuick 2,” Radio Science, vol. 46, no. 5, Article ID RS0D17, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. IS-GPS-200 , Navstar GPS Space Segment/Navigation User Interfaces, Revision D, ARINC Research, El Segundo, Calif, USA, 2004.
  34. A. Angrisano, S. Gaglione, C. Gioia, D. Borio, and J. Fortuny-Guasch, “Testing the test satellites: the Galileo IOV measurement accuracy,” in Proceedings of ICL-GNSS, Torino, Italy, June 2013.