Table of Contents Author Guidelines Submit a Manuscript
International Journal of Optics
Volume 2012, Article ID 157319, 12 pages
http://dx.doi.org/10.1155/2012/157319
Review Article

Manipulating the Propagation of Solitons with Solid-Core Photonic Bandgap Fibers

Laboratoire PhLAM, UMR CNRS 8523, IRCICA, Université Lille 1, 59655 Villeneuve d'Ascq Cedex, France

Received 7 April 2011; Accepted 20 June 2011

Academic Editor: Miguel González Herráez

Copyright © 2012 O. Vanvincq et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Luan, A. K. George, T. D. Hedley et al., “All-solid photonic bandgap fiber,” Optics Letters, vol. 29, no. 20, pp. 2369–2371, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, and P. S. J. Russell, “Guidance properties of low-contrast photonic bandgap fibres,” Optics Express, vol. 13, no. 7, pp. 2503–2511, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. V. Pureur, A. Betourne, G. Bouwmans et al., “Overview on solid core photonic bandgap fibers,” Fiber and Integrated Optics, vol. 28, no. 1, pp. 27–50, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, “Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (<20 dB/km) around 1550 nm,” Optics Express, vol. 13, pp. 8452–8459, 2005. View at Google Scholar · View at Scopus
  5. A. Fuerbach, P. Steinvurzel, J. A. Bolger, A. Nulsen, and B. J. Eggleton, “Nonlinear propagation effects in antiresonant high-index inclusion photonic crystal fibers,” Optics Letters, vol. 30, no. 8, pp. 830–832, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Kibler, T. Martynkien, M. Szpulak et al., “Nonlinear femtosecond pulse propagation in an all-solid photonic bandgap fiber,” Optics Express, vol. 17, no. 12, pp. 10393–10398, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. A. S. Cerqueira Jr., C. M. B. Cordeiro, F. Biancalana et al., “Nonlinear interaction between two different photonic bandgaps of a hybrid photonic crystal fiber,” Optics Letters, vol. 33, no. 18, pp. 2080–2082, 2008. View at Google Scholar
  8. P. D. Rasmussen, J. Laegsgaard, and O. Bang, “Degenerate four wave mixing in solid core photonic bandgap fibers,” Optics Express, vol. 16, no. 6, pp. 4059–4068, 2008. View at Google Scholar
  9. A. Bétourné, Y. Quiquempois, G. Bouwmans, and M. Douay, “Design of a photonic crystal fiber for phase-matched frequency doubling or tripling,” Optics Express, vol. 16, no. 18, pp. 14255–14262, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. V. Pureur and J. M. Dudley, “Nonlinear spectral broadening of femtosecond pulses in solid-core photonic bandgap fibers,” Optics Letters, vol. 35, no. 16, pp. 2813–2815, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. O. Vanvincq, A. Kudlinski, A. Bétourné, Y. Quiquempois, and G. Bouwmans, “Extreme deceleration of the soliton self-frequency shift by the third-order dispersion in solid-core photonic bandgap fibers,” Journal of the Optical Society of America B, vol. 27, no. 11, pp. 2328–2335, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Bétourné, A. Kudlinski, G. Bouwmans, O. Vanvincq, A. Mussot, and Y. Quiquempois, “Control of supercontinuum generation and soliton self-frequency shift in solid-core photonic bandgap fibers,” Optics Letters, vol. 34, no. 20, pp. 3083–3085, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. O. Vanvincq, B. Barviau, A. Mussot, G. Bouwmans, Y. Quiquempois, and A. Kudlinski, “Significant reduction of power fluctuations at the long-wavelength edge of a supercontinuum generated in solid-core photonic bandgap fibers,” Optics Express, vol. 18, no. 23, pp. 24352–24360, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Bétourné, G. Bouwmans, Y. Quiquempois, M. Perrin, and M. Douay, “Improvements of solid-core photonic bandgap fibers by means of interstitial air holes,” Optics Letters, vol. 32, no. 12, pp. 1719–1721, 2007. View at Google Scholar · View at Scopus
  15. M. Perrin, Y. Quiquempois, G. Bouwmans, and M. Douay, “Coexistence of total internal reflexion and bandgap modes in solid core photonic bandgap fibre with intersticial air holes,” Optics Express, vol. 15, no. 21, pp. 13783–13795, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE Journal of Quantum Electronics, vol. 17, no. 3, pp. 404–407, 1981. View at Google Scholar · View at Scopus
  17. G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, New York, NY, USA, 4th edition, 2007.
  18. E. M. Dianov, A. Y. Karasik, P. V. Mamyshev et al., “Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers,” JETP Letters, vol. 41, pp. 294–297, 1985. View at Google Scholar
  19. Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE Journal of Quantum Electronics, vol. 23, no. 5, pp. 510–524, 1987. View at Google Scholar · View at Scopus
  20. P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup and fundamental soliton formation in a single-mode optical fiber,” IEEE Journal of Quantum Electronics, vol. 23, no. 11, pp. 1938–1946, 1987. View at Google Scholar · View at Scopus
  21. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Optics Letters, vol. 11, no. 10, pp. 659–661, 1986. View at Google Scholar
  22. J. P. Gordon, “Theory of the soliton self-frequency shift,” Optics Letters, vol. 11, no. 10, pp. 662–664, 1986. View at Google Scholar
  23. J. Laegsgaard, “Mode profile dispersion in the generalized nonlinear Schrödinger equation,” Optics Express, vol. 15, no. 24, pp. 16110–16123, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. J. C. Travers, M. H. Frosz, and J. M. Dudley, “Nonlinear fibre optics overview,” in Supercontinuum Generation in Optical Fibers, J. M. Dudley and J. R. Taylor, Eds., chapter 3, Cambridge University Press, Cambridge, UK, 2010. View at Google Scholar
  25. D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,” Journal of the Optical Society of America B, vol. 19, no. 12, pp. 2886–2892, 2002. View at Google Scholar · View at Scopus
  26. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Reviews of Modern Physics, vol. 78, no. 4, pp. 1135–1184, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. The long-pulse pumping regime refers to cases in which the pump pulse duration T is much longer than the MI oscillation period TMI, given by TMI=2π|β2|/(2γP), with β2 the second-order dispersion coefficient, γ the NL coefficient and P the pump peak power. Cases in which T is in the order or less than TMI correspond to the short-pulse pumping regime.
  28. A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nature Photonics, vol. 1, no. 11, pp. 653–657, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. J. M. Stone and J. C. Knight, “Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser,” Optics Express, vol. 16, no. 4, pp. 2670–2675, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Kudlinski, G. Bouwmans, Y. Quiquempois, and A. Mussot, “Experimental demonstration of multiwatt continuous-wave supercontinuum tailoring in photonic crystal fibers,” Applied Physics Letters, vol. 92, no. 14, Article ID 141103, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Kudlinski, G. Bouwmans, M. Douay, M. Taki, and A. Mussot, “Dispersion-engineered photonic crystal fibers for CW-pumped supercontinuum sources,” Journal of Lightwave Technology, vol. 27, no. 11, pp. 1556–1564, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature, vol. 450, no. 7172, pp. 1054–1057, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Optics Express, vol. 16, no. 6, pp. 3644–3651, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Mussot, A. Kudlinski, M. Kolobov, E. Louvergneaux, M. Douay, and M. Taki, “Observation of extreme temporal events in CW-pumped supercontinuum,” Optics Express, vol. 17, no. 19, pp. 17010–17015, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Genty, C. M. de Sterke, O. Bang, F. Dias, N. Akhmediev, and J. M. Dudley, “Collisions and turbulence in optical rogue wave formation,” Physics Letters, Section A, vol. 374, no. 7, pp. 989–996, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Vanholsbeeck, S. Martin-Lopez, M. González-Herráez, and S. Coen, “The role of pump incoherence in continuous-wave supercontinuum generation,” Optics Express, vol. 13, no. 17, pp. 6615–6625, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Lafargue, J. Bolger, G. Genty, F. Dias, J. M. Dudley, and B. J. Eggleton, “Direct detection of optical rogue wave energy statistics in supercontinuum generation,” Electronics Letters, vol. 45, no. 4, pp. 217–219, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Kubota, K. R. Tamura, and M. Nakazawa, “Analyses of coherence-maintained ultrashort optical pulse trains and supercontinuum generation in the presence of soliton-amplified spontaneous-emission interaction,” Journal of the Optical Society of America B, vol. 16, no. 12, pp. 2223–2232, 1999. View at Google Scholar · View at Scopus
  39. M. Erkintalo, G. Genty, and J. M. Dudley, “On the statistical interpretation of optical rogue waves,” European Physical Journal, vol. 185, no. 1, pp. 135–144, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Hammani, B. Kibler, C. Finot, and A. Picozzi, “Emergence of rogue waves from optical turbulence,” Physics Letters, Section A, vol. 374, no. 34, pp. 3585–3589, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Taki, A. Mussot, A. Kudlinski, E. Louvergneaux, M. Kolobov, and M. Douay, “Third-order dispersion for generating optical rogue solitons,” Physics Letters, Section A, vol. 374, no. 4, pp. 691–695, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. D. A. Sidorov-Biryukov, E. E. Serebryannikov, and A. M. Zheltikov, “Time-resolved coherent anti-Stokes Raman scattering with a femtosecond soliton output of a photonic-crystal fiber,” Optics Letters, vol. 31, no. 15, pp. 2323–2325, 2006. View at Publisher · View at Google Scholar · View at Scopus