Table of Contents Author Guidelines Submit a Manuscript
International Journal of Optics
Volume 2012, Article ID 276367, 10 pages
http://dx.doi.org/10.1155/2012/276367
Research Article

Volumetric Diffuse Optical Tomography for Small Animals Using a CCD-Camera-Based Imaging System

1Department of Bioengineering, Joint Graduate Program between University of Texas at Arlington and University of Texas Southwestern Medical Center, University of Texas at Arlington, Arlington, TX 76019, USA
2State key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 10875, China

Received 15 July 2011; Revised 21 October 2011; Accepted 24 October 2011

Academic Editor: Javier A. Jo

Copyright © 2012 Zi-Jing Lin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Iftimia and H. Jiang, “Quantitative optical image reconstruction of turbid media by use of direct-current measurements,” Applied Optics, vol. 39, no. 28, pp. 5256–5261, 2000. View at Google Scholar · View at Scopus
  2. A. M. Siegel, J. J. A. Marota, and D. A. Boas, “Design and evaluation of a continuous-wave diffuse optical tomography system,” Optics Express, vol. 4, no. 8, pp. 287–298, 1999. View at Google Scholar · View at Scopus
  3. D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” NeuroImage, vol. 23, no. 1, pp. S275–S288, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. B. R. White, A. Z. Snyder, A. L. Cohen et al., “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” NeuroImage, vol. 47, no. 1, pp. 148–156, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Custo, D. A. Boas, D. Tsuzuki et al., “Anatomical atlas-guided diffuse optical tomography of brain activation,” NeuroImage, vol. 49, no. 1, pp. 561–567, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. D. R. Leff, O. J. Warren, L. C. Enfield et al., “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Research and Treatment, vol. 108, no. 1, pp. 9–22, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Medical Physics, vol. 35, no. 6, pp. 2443–2451, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Xu, D. Piao, C. H. Musgrove, C. F. Bunting, and H. Dehghani, “Trans-rectal ultrasound-coupled near-infrared optical tomography of the prostate–part I: simulation,” Optics Express, vol. 16, no. 22, pp. 17484–17504, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. Z. Jiang, D. Piao, G. Xu et al., “Trans-rectal ultrasound-coupled near-infrared optical tomography of the prostate—part II: experimental demonstration,” Optics Express, vol. 16, no. 22, pp. 17505–17520, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. J. P. Sacha, M. D. Cockman, T. E. Dufresne, and D. P. Trokhan, “Quantification of regional fat volume in rat MRI,” in Medical Imaging 2003: Physiology and Function: Methods, Systems, and Applications, vol. 5031 of Proceedings of SPIE, pp. 289–297, February 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Laib, O. Barou, L. Vico, M. H. Lafage-Proust, C. Alexandre, and P. Rügsegger, “3D micro-computed tomography of trabecular and cortical bone architecture with application to a rat model of immobilisation osteoporosis,” Medical and Biological Engineering and Computing, vol. 38, no. 3, pp. 326–332, 2000. View at Google Scholar · View at Scopus
  12. D. Sorger, M. Patt, P. Kumar et al., “[18F]Fluoroazomycinarabinofuranoside (18FAZA) and [18F]Fluoromisonidazole (18FMISO): a comparative study of their selective uptake in hypoxic cells and PET imaging in experimental rat tumors,” Nuclear Medicine and Biology, vol. 30, no. 3, pp. 317–326, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Vanhove, T. Lahoutte, M. Defrise, A. Bossuyt, and P. R. Franken, “Reproducibility of left ventricular volume and ejection fraction measurements in rat using pinhole gated SPECT,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 32, no. 2, pp. 211–220, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” Journal of Cerebral Blood Flow and Metabolism, vol. 23, no. 8, pp. 911–924, 2003. View at Google Scholar · View at Scopus
  15. G. Gulsen, O. Birgul, M. B. Unlu, R. Shafiiha, and O. Nalcioglu, “Combined diffuse optical tomography (DOT) and MRI system for cancer imaging in small animals,” Technology in Cancer Research and Treatment, vol. 5, no. 4, pp. 351–363, 2006. View at Google Scholar · View at Scopus
  16. Q. Zhao, L. Ji, and T. Jiang, “Improving depth resolution of diffuse optical tomography with a layer-based sigmoid adjustment method,” Optics Express, vol. 15, no. 7, pp. 4018–4029, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Österberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Applied Optics, vol. 38, no. 13, pp. 2950–2961, 1999. View at Google Scholar · View at Scopus
  18. H. Niu, Z. Lin, F. Tian, S. Dhamne, and H. Liu, “Comprehensive investigation of three-dimensional diffuse optical tomography with depth compensation algorithm,” Journal of Biomedical Optics, vol. 15, no. 4, article 046005, 2010. View at Publisher · View at Google Scholar
  19. H. Niu, F. Tian, Z. Lin, and H. Liu, “Development of a compensation algorithm for accurate depth localization in diffuse optical tomography,” Optics Letters, vol. 35, no. 3, pp. 429–431, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. S. B. Howell, Handbook of CCD Astronomy, 2000.
  21. S. C. Kanick, U. A. Gamm, M. Schouten, H. J. Sterenborg, D. J. Robinson, and A. Amelink, “Measurement of the reduced scattering coefficient of turbid media using single fiber reflectance spectroscopy: fiber diameter and phase function dependence,” Biomedical Optics Express, vol. 2, pp. 1687–1702, 2011. View at Google Scholar
  22. M. Johns, C. A. Giller, D. C. German, and H. Liu, “Determination of reduced scattering coefficient of biological tissue from a needle-like probe,” Optics Express, vol. 13, no. 13, pp. 4828–4842, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Zonios and A. Dimou, “Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties,” Optics Express, vol. 14, no. 19, pp. 8661–8674, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems, vol. 15, no. 2, pp. R41–R49, 1999. View at Google Scholar · View at Scopus
  25. Q. Zhao, L. Ji, and T. Jiang, “Improving performance of reflectance diffuse optical imaging using a multicentered mode,” Journal of Biomedical Optics, vol. 11, no. 6, Article ID 064019, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. F. Tian, G. Alexandrakis, and H. Liu, “Optimization of probe geometry for diffuse optical brain imaging based on measurement density and distribution,” Applied Optics, vol. 48, no. 13, pp. 2496–2504, 2009. View at Publisher · View at Google Scholar · View at Scopus