Table of Contents Author Guidelines Submit a Manuscript
International Journal of Optics
Volume 2012 (2012), Article ID 537949, 5 pages
http://dx.doi.org/10.1155/2012/537949
Research Article

Fluorescence Properties and Synthesis of Green-Emitting Tb3+-Activated Amorphous Calcium Silicate Phosphor by Ultraviolet Irradiation of 378 nm

Department of Materials and Applied Chemistry, Faculty of Science and Technology, Nihon University, 1-8, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan

Received 27 September 2011; Accepted 31 October 2011

Academic Editor: Gong Ru Lin

Copyright © 2012 Yoshiyuki Kojima et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Applied Physics Letters, vol. 64, no. 13, pp. 1687–1689, 1994. View at Publisher · View at Google Scholar
  2. S. Nakamura, “Present status and future prospects of GaN-based light emitting devices,” The Japan Society of Applied Physics, vol. 65, no. 7, pp. 676–685, 1996. View at Google Scholar
  3. Y. Hu, W. Zhuang, H. Ye, D. Wang, S. Zhang, and X. Huang, “A novel red phosphor for white light emitting diodes,” Journal of Alloys and Compounds, vol. 390, no. 1-2, pp. 226–229, 2005. View at Publisher · View at Google Scholar
  4. R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, “High-power phosphor-converted light-emitting diodes based on III-nitrides,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 8, no. 2, pp. 339–345, 2002. View at Publisher · View at Google Scholar
  5. Y. Kojima, S. Kamei, and N. Nishimiya, “Preparation and fluorescence property of red-emitting Eu3+-activated amorphous calcium silicate phosphor,” Materials Research Bulletin, vol. 45, no. 2, pp. 121–123, 2010. View at Publisher · View at Google Scholar
  6. S. Kamei, Y. Kojima, and N. Nishimiya, “Preparation and fluorescence properties of novel alkaline earth silicate phosphors by reduction treatment of Eu3+ to Eu2+,” Journal of the Ceramic Society of Japan, vol. 118, no. 1380, pp. 758–761, 2010. View at Google Scholar
  7. S. Kamei, Y. Kojima, and N. Nishimiya, “Preparation and fluorescence properties of novel red-emitting Eu3+-activated amorphous alkaline earth silicate phosphors,” Journal of Luminescence, vol. 130, no. 11, pp. 2247–2250, 2010. View at Publisher · View at Google Scholar
  8. Y. Kojima, K. Machi, T. Yasue, and Y. Arai, “Synthesis of Ce3+ and Mn2+ codoped calcium carbonate phosphor emitting by black light irradiation and its fluorescence property,” Journal of the Ceramic Society of Japan, vol. 108, no. 9, pp. 836–841, 2000. View at Google Scholar
  9. Y. Kojima, S. Doi, and T. Yasue, “Synthesis of cerium (III) and terbium(III) codoped vaterite phosphor emitting by black light irradiationand its fluorescence property,” Journal of the Ceramic Society of Japan, vol. 110, pp. 755–760, 2002. View at Google Scholar
  10. Y. Kojima, K. Aoyagi, and T. Yasue, “Effect of lithium ion addition on afterglow time of green-emitting Ce3+ and Pr3+ codoped CaS phosphor by black light irradiation,” Journal of Luminescence, vol. 115, no. 1-2, pp. 13–18, 2005. View at Publisher · View at Google Scholar
  11. Y. Kojima, K. Aoyagi, and T. Yasue, “Afterglow mechanism and thermoluminescence of red-emitting CaS:Eu2+,Pr3+ phosphor with incorporated Li+ ion upon visible light irradiation,” Journal of Luminescence, vol. 126, no. 2, pp. 319–322, 2007. View at Publisher · View at Google Scholar
  12. Z. Li, J. Zeng, G. Zhang, and Y. Li, “A new promising phosphor, Na3La2(BO3)3:Ln (Ln=Eu, Tb),” Journal of Solid State Chemistry, vol. 178, no. 12, pp. 3624–3630, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Nonat, “The structure and stoichiometry of C–S–H,” Cement and Concrete Research, vol. 34, no. 9, pp. 1521–1528, 2004. View at Publisher · View at Google Scholar
  14. J. J. Chen, J. J. Thomas, H. F.W. Taylor, and H. M. Jennings, “Solubility and structure of calcium silicate hydrate,” Cement and Concrete Research, vol. 34, no. 9, pp. 1499–1519, 2004. View at Publisher · View at Google Scholar
  15. S. Komarneni, R. Roy, and D. M. Roy, “Pseudomorphism in xonotlite and tobermorite with Co2+ and Ni2+ exchange for Ca2+ at 25°C,” Cement and Concrete Research, vol. 16, no. 1, pp. 47–58, 1986. View at Google Scholar
  16. N. J. Coleman, “Interactions of Cd(II) with waste-derived 11 Å tobermorites,” Separation and Purification Technology, vol. 48, no. 1, pp. 62–70, 2006. View at Publisher · View at Google Scholar
  17. X. Zhao, X. Wang, B. Chen, Q. Meng, B. Yan, and W. Di, “Luminescent properties of Eu3+ doped α-Gd2(MoO4)3 phosphor for white light emitting diodes,” Optical Materials, vol. 29, no. 12, pp. 1680–1684, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Kojima, S. Kamei, T. Toyama, and N. Nishimiya, “Preparation of novel phosphor using intercalation of tobermorite,” Journal of Luminescence, vol. 129, no. 7, pp. 751–754, 2009. View at Publisher · View at Google Scholar