International Journal of Optics
Volume 2012 (2012), Article ID 689612, 7 pages
http://dx.doi.org/10.1155/2012/689612
Research Article
Generation of Optical Vortex Arrays Using Single-Element Reversed-Wavefront Folding Interferometer
1Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
2Laser Applications and Holography Laboratory, Instrument Design Development Centre, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
Received 15 April 2011; Revised 7 June 2011; Accepted 8 June 2011
Academic Editor: Shunichi Sato
Copyright © 2012 Brijesh Kumar Singh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Linked References
- J. F. Nye and M. V. Berry, “Dislocation in wave trains,” Proceedings of the Royal Society A, vol. 336, pp. 165–190, 1974. View at Google Scholar
- L. Allen, M. J. Padgett, and M. Babiker, “IV The orbital angular momentum of light,” Progress in Optics, vol. 39, pp. 291–372, 1999. View at Publisher · View at Google Scholar
- C.-S. Guo, S.-J. Yue, and G.-X. Wei, “Measuring the orbital angular momentum of optical vortices using a multipinhole plate,” Applied Physics Letters, vol. 94, no. 23, Article ID 231104, 3 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
- K. T. Gahagan and G. A. Swartzlander Jr., “Optical vortex trapping of particles,” Optics Letters, vol. 21, no. 11, pp. 827–829, 1996. View at Google Scholar · View at Scopus
- M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Physical Review A, vol. 56, no. 5, pp. 4064–4075, 1997. View at Google Scholar · View at Scopus
- C. T. Law and G. A. Swartzlander, “Optical vortex solitons and the stability of dark soliton stripes,” Optics Letters, vol. 18, no. 8, pp. 586–588, 1993. View at Google Scholar · View at Scopus
- W. Wang, T. Yokozeki, R. Ishijima et al., “Optical vortex metrology for nanometric speckle displacement measurement,” Optics Express, vol. 14, no. 1, pp. 120–127, 2006. View at Publisher · View at Google Scholar · View at Scopus
- W. Wang, T. Yokozeki, R. Ishijima, M. Takeda, and S. G. Hanson, “Optical vortex metrology based on the core structures of phase singularities in Laguerre-Gauss transform of a speckle pattern,” Optics Express, vol. 14, no. 22, pp. 10195–10206, 2006. View at Publisher · View at Google Scholar · View at Scopus
- N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Optics Letters, pp. 221–223, 1992. View at Google Scholar
- K. J. Moh, X.-C. Yuan, W. C. Cheong et al., “High-power efficient multiple optical vortices in a single beam generated by a kinoform-type spiral phase plate,” Applied Optics, vol. 45, no. 6, pp. 1153–1161, 2006. View at Publisher · View at Google Scholar · View at Scopus
- D. Ganic, X. Gan, M. Gu et al., “Generation of doughnut laser beams by use of a liquid-crystal cell with a conversion efficiency near 100%,” Optics Letters, vol. 27, no. 15, pp. 1351–1353, 2002. View at Google Scholar · View at Scopus
- Y. Izdebskaya, V. Shvedov, and A. Volyar, “Generation of higher-order optical vortices by a dielectric wedge,” Optics Letters, vol. 30, no. 18, pp. 2472–2474, 2005. View at Publisher · View at Google Scholar · View at Scopus
- C. Tamm and C. O. Weiss, “Bistability and optical switching of spatial patterns in a laser,” Journal of the Optical Society of America B, vol. 7, pp. 1034–1038, 1990. View at Google Scholar
- R. Kumar, D. Singh Mehta, A. Sachdeva, A. Garg, P. Senthilkumaran, and C. Shakher, “Generation and detection of optical vortices using all fiber-optic system,” Optics Communications, vol. 281, no. 13, pp. 3414–3420, 2008. View at Publisher · View at Google Scholar · View at Scopus
- J. Masajada and B. Dubik, “Optical vortex generation by three plane wave interference,” Optics Communications, vol. 198, no. 1–3, pp. 21–27, 2001. View at Publisher · View at Google Scholar · View at Scopus
- J. Masajada, A. Popiołek-Masajada, E. Frączek, and W. Frączek, “Vortex points localization problem in optical vortices interferometry,” Optics Communications, vol. 234, no. 1–6, pp. 23–28, 2004. View at Publisher · View at Google Scholar · View at Scopus
- K. O'Holleran, M. J. Padgett, and M. R. Dennis, “Topology of optical vortex lines formed by the interference of three, four, and five plane waves,” Optics Express, vol. 14, no. 7, pp. 3039–3044, 2006. View at Publisher · View at Google Scholar · View at Scopus
- S. Vyas and P. Senthilkumaran, “Interferometric optical vortex array generator,” Applied Optics, vol. 46, no. 15, pp. 2893–2898, 2007. View at Publisher · View at Google Scholar · View at Scopus
- S. Vyas and P. Senthilkumaran, “Vortex array generation by interference of spherical waves,” Applied Optics, vol. 46, no. 32, pp. 7862–7867, 2007. View at Publisher · View at Google Scholar · View at Scopus
- J. Masajada, A. Popiołek-Masajada, and M. Leniec, “Creation of vortex lattices by a wavefront division,” Optics Express, vol. 15, no. 8, pp. 5196–5207, 2007. View at Publisher · View at Google Scholar · View at Scopus
- P. Kurzynowski, W. A. Wozniak, and E. Frączek, “Optical vortices generation using the Wollaston compensator,” Applied Optics, vol. 45, pp. 7898–7903, 2006. View at Google Scholar
- P. Kurzynowski and M. Borwińska, “Generation of vortex-type markers in a one-wave setup,” Applied Optics, vol. 46, no. 5, pp. 676–679, 2007. View at Publisher · View at Google Scholar · View at Scopus
- D. P. Ghai, S. Vyas, P. Senthilkumaran, and R. S. Sirohi, “Vortex lattice generation using interferometric techniques based on lateral shearing,” Optics Communications, vol. 282, no. 14, pp. 2692–2698, 2009. View at Publisher · View at Google Scholar · View at Scopus
- J. Masajada, “Small-angle rotations measurement using optical vortex interferometer,” Optics Communications, vol. 239, no. 4–6, pp. 373–381, 2004. View at Publisher · View at Google Scholar · View at Scopus
- A. Popiołek-Masajada, M. Borwińska, and W. Frączek, “Testing a new method for small-angle rotation measurements with the optical vortex interferometer,” Measurement Science and Technology, vol. 17, no. 4, pp. 653–658, 2006. View at Publisher · View at Google Scholar
- A. Popiołek-Masajada, M. Borwinńska, and B. Dubik, “Reconstruction of a plane wave's tilt and orientation using an optical vortex interferometer,” Optical Engineering, vol. 46, no. 7, Article ID 073604, 2007. View at Publisher · View at Google Scholar · View at Scopus
- M. Borwińska, A. Popiołek-Masajada, and P. Kurzynowski, “Measurements of birefringent media properties using optical vortex birefringence compensator,” Applied Optics, vol. 46, no. 25, pp. 6419–6426, 2007. View at Publisher · View at Google Scholar · View at Scopus
- M. Santarsiero and R. Borghi, “Measuring spatial coherence by using a reversed-wavefront Young interferometer,” Optics Letters, vol. 31, no. 7, pp. 861–863, 2006. View at Publisher · View at Google Scholar · View at Scopus
- J. A. Ferrari and E. M. Frins, “Single-element interferometer,” Optics Communications, vol. 279, no. 2, pp. 235–239, 2007. View at Publisher · View at Google Scholar · View at Scopus
- Q. Weijuan, Y. Yingjie, C. O. Choo, and A. Asundi, “Digital holographic microscopy with physical phase compensation,” Optics Letters, vol. 34, no. 8, pp. 1276–1278, 2009. View at Publisher · View at Google Scholar · View at Scopus
- M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and inteferometry,” Journal of the Optical Society of America, vol. 72, no. 1, pp. 156–160, 1982. View at Google Scholar · View at Scopus