Table of Contents Author Guidelines Submit a Manuscript
International Journal of Optics
Volume 2012 (2012), Article ID 764084, 7 pages
Research Article

Detailed Theoretical Model for Adjustable Gain-Clamped Semiconductor Optical Amplifier

1Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XW, UK
2Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow G12 8LT, UK

Received 1 October 2011; Revised 7 February 2012; Accepted 11 February 2012

Academic Editor: Luciano Mescia

Copyright © 2012 Lin Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The adjustable gain-clamped semiconductor optical amplifier (AGC-SOA) uses two SOAs in a ring-cavity topology: one to amplify the signal and the other to control the gain. The device was designed to maximize the output saturated power while adjusting gain to regulate power differences between packets without loss of linearity. This type of subsystem can be used for power equalisation and linear amplification in packet-based dynamic systems such as passive optical networks (PONs). A detailed theoretical model is presented in this paper to simulate the operation of the AGC-SOA, which gives a better understanding of the underlying gain clamping mechanics. Simulations and comparisons with steady-state and dynamic gain modulation experimental performance are given which validate the model.