Table of Contents Author Guidelines Submit a Manuscript
International Journal of Optics
Volume 2013 (2013), Article ID 525142, 7 pages
Research Article

Spectral Intensity Variation by the Correlation Function of Refractive Index Fluctuations of the Liquid Medium

Magnetic and Superconducting Materials Section, Materials & Advanced Accelerator Sciences Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, Madhya Pradesh, India

Received 13 May 2013; Accepted 15 August 2013

Academic Editor: Ivan Djordjevic

Copyright © 2013 Nageshwar Singh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


It is proposed that a macroscopic theory of propagation and scattering of light through random media can be functional for the dye liquid flowing media in the microscopic levels too, with modest approximations. Maxwell’s equation for a random refractive index medium is approximated and solved for the electric field. An analytical expression for the spectral intensity of the field scattered by the refractive index fluctuations inside a medium has been derived which was valid within the first Born approximation. Far field spectral intensity variation of the radiation propagating through the liquid medium is a consequence of variation in correlation function of the refractive index inhomogeneities. The strength of radiation scattered in a particular direction depends on the spatial correlation function of the refractive index fluctuations of the medium. An attempt is made to explain some of the experimentally observed spectral intensity variations, particularly dye emission propagation through liquid flowing medium, in the presence of thermal and flow field.