Table of Contents Author Guidelines Submit a Manuscript
International Journal of Optics
Volume 2013, Article ID 947068, 10 pages
http://dx.doi.org/10.1155/2013/947068
Research Article

Relativity and the Tunneling Problem in a “Reduced” Waveguide

Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 México, DF, Mexico

Received 24 June 2013; Revised 2 October 2013; Accepted 4 October 2013

Academic Editor: Robert G. Elliman

Copyright © 2013 Eckehard W. Mielke and Miguel A. Marquina Carmona. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Altfelder, A. A. Voevodin, and A. K. Roy, “Vacuum phonon tunneling,” Physical Review Letters, vol. 105, Article ID 166101, 2010. View at Google Scholar
  2. H. M. Nussenzveig, “Light tunneling in clouds,” Applied Optics, vol. 42, no. 9, pp. 1588–1593, 2003. View at Google Scholar · View at Scopus
  3. E. H. Hauge and J. A. Stovneng, “Tunneling times: a critical review,” Reviews of Modern Physics, vol. 61, p. 917, 1989. View at Google Scholar
  4. M. Razavy, Quantum Theory of Tunneling, World Scientific, Singapore, 2003.
  5. G. Nimtz, “Superluminal signal velocity,” Annalen der Physik, vol. 7, no. 7-8, pp. 618–624, 1998. View at Google Scholar · View at Scopus
  6. G. Nimtz, “Evanescent modes are not necessarily Einstein causal,” European Physical Journal B, vol. 7, no. 4, pp. 523–525, 1999. View at Google Scholar · View at Scopus
  7. A. A. Stahlhofer and G. Nimtz, “Evanescent modes are virtual fotons,” Europhysics Letters, vol. 76,, pp. 189–195, 2006. View at Google Scholar
  8. G. Nimtz, “Do evanescent modes violate relativistic causality?” Lecture Notes in Physics, vol. 702, pp. 506–531, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Landauer and T. Martin, “Barrier interaction time in tunneling,” Reviews of Modern Physics, vol. 66, no. 1, pp. 217–228, 1994. View at Publisher · View at Google Scholar · View at Scopus
  10. W. Rindler, Introduction to Special Relativity, The Clarendon Press, Oxford, UK, 1982.
  11. S. Herrmann, A. Senger, K. Möhle, M. Nagel, E. V. Kovalchuk, and A. Peters, “Rotating optical cavity experiment testing Lorentz invariance at the 10-17 level,” Physical Review D, vol. 80, no. 10, Article ID 105011, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Riemann, “Ein Beitrag zur Elektrodynamik,” Annalen der Physik und Chemie, vol. 131, pp. 237–243, 1867. View at Google Scholar
  13. R. Kohlrausch and W. E. Weber, “Ueber die Elektricitätsmenge, welche bei galvanischen Strömen durch den Querschnitt der Kette fliesst,” Annalen der Physik, vol. 99, no. 10, 1856. View at Google Scholar
  14. W. Voigt, “Theorie des Lichtes für bewegte Medien,” Nachrichten von der Königl. Gesellschaft der Wissenschaften und der Georg-Augusts-Universität zu Göttingen, no. 8, pp. 177–238, 1887. View at Google Scholar
  15. S. Flügge, Rechenmethoden der Elektrodynamik, Springer, Berlin, Germany, 1986.
  16. M. A. Heald and J. B. Marion, Classical Electromagnetic Radiation, Brooks/Cole, New York, NY, USA, 3rd edition, 1985.
  17. T. Dereli, J. Gratus, and R. W. Tucker, “The covariant description of electromagnetically polarizable media,” Physics Letters A, vol. 361, no. 3, pp. 190–193, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. G. L. J. A. Rikken and B. A. Van Tiggelen, “Measurement of the Abraham force and its predicted QED corrections in crossed electric and magnetic fields,” Physical Review Letters, vol. 107, no. 17, Article ID 170401, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. F. W. Hehl, J. Lemke, and E. W. Mielke, “Two lectures on fermions and gravity,” in Geometry and Theoretical Physics (Bad Honnef, 1990), J. Debrus and A. C. Hirshfeld, Eds., pp. 56–140, Springer, Berlin, Germany, 1991. View at Google Scholar · View at MathSciNet
  20. R. Ferraro, “Testing nonlinear electrodynamics in waveguides: the effect of magnetostatic fields on the transmitted power,” Journal of Physics A, vol. 43, no. 19, Article ID 195202, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. M. A. Marquina Carmona, Microondas y Tiempo de Tunelaje, Proyecto de Investigacion, UAM-I, 2010.
  22. S. J. Orfanidis, Electromagnetic Waves and Antennas, Rutgers University, 2008.
  23. L. Brillouin, Wave Propagation and Group Velocity, vol. 8 of Pure and Applied Physics, Academic Press, New York, NY, USA, 1960.
  24. T. Emig, Interpretation of tunneling times of evanescent electromagnetic modes within the framework of classical electrodynamics [Diploma thesis], (Advisor: E. Mielke) Cologne, Jun 1995, (Original German title: “Deutung der Tunnelzeiten bei evaneszenten elektromagnetischen Moden im Rahmen der klassischen Elektrodynamik”.).
  25. R. L. Smith, “The velocities of light,” American Journal of Physics, vol. 38, no. 8, 1970. View at Google Scholar
  26. L. Zhang, L. Zhan, K. Qian et al., “Superluminal propagation at negative group velocity in optical fibers based on Brillouin lasing oscillation,” Physical Review Letters, vol. 107, no. 9, Article ID 093903, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, “Observation of superluminal and slow light propagation in erbium-doped optical fiber,” Europhysics Letters, vol. 73, no. 2, pp. 218–224, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. H. M. Nussenzveig, “Time delay in quantum scattering,” Physical Review D, vol. 6, no. 6, pp. 1534–1542, 1972. View at Publisher · View at Google Scholar · View at Scopus
  29. C. A. A. de Carvalho and H. M. Nussenzveig, “Time delay,” Physics Report, vol. 364, no. 2, pp. 83–174, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Nimtz, “On virtual phonons, photons, and electrons,” Foundations of Physics, vol. 39, no. 12, pp. 1346–1355, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. L. A. MacColl, “Note on the transmission and reflection of wave packets by potential barriers,” Physical Review, vol. 40, no. 4, pp. 621–626, 1932. View at Publisher · View at Google Scholar · View at Scopus
  32. N. T. Maitra and E. J. Heller, “Barrier tunneling and reflection in the time and energy domains: the battle of the exponentials,” Physical Review Letters, vol. 78, no. 16, pp. 3035–3038, 1997. View at Google Scholar · View at Scopus
  33. D. Sokolovski, “Why does relativity allow quantum tunnelling to “take no time”?” Proceedings of the Royal Society A, vol. 460, no. 2042, pp. 499–506, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Measurement of the single-photon tunneling time,” Physical Review Letters, vol. 71, no. 5, pp. 708–711, 1993. View at Publisher · View at Google Scholar · View at Scopus
  35. A. M. Steinberg, “Comment on “Photonic tunneling times”,” Journal de Physique I, vol. 4, pp. 1813–1816, 1994. View at Google Scholar
  36. V. Domínguez-Rocha, C. Zagoya, and M. Martínez-Mares, “Poynting's theorem for plane waves at an interface: a scattering matrix approach,” American Journal of Physics, vol. 76, no. 7, pp. 621–629, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Breit and J. A. Wheeler, “Collision of two light quanta,” Physical Review, vol. 46, no. 12, pp. 1087–1091, 1934. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Tausch, “Mathematical and numerical techniques for open periodic waveguides,” in Progress in Computational Physics (PiCP), M. Ehrhardt, Ed., pp. 50–72, Bentham, 2010. View at Google Scholar
  39. S. C. Miller Jr. and R. H. Good, “A WKB-type approximation to the Schrödinger equation,” Physical Review, vol. 91, no. 1, pp. 174–179, 1953. View at Publisher · View at Google Scholar
  40. W. Heitmann and G. Nimtz, “On causality proofs of superluminal barrier traversal of frequency band limited wave packets,” Physics Letters A, vol. 196, no. 1-2, pp. 154–158, 1994. View at Google Scholar · View at Scopus
  41. H. Wilbraham, “On a certain periodic function,” The Cambridge and Dublin Mathematical Journal, vol. 3, pp. 198–201, 1848. View at Google Scholar
  42. J. W. Gibbs, “Letter to the editor,” Nature, vol. 59, p. 606, 1899. View at Google Scholar
  43. W. J. Thompson, “Fourier series and the Gibbs phenomenon,” American Journal of Physics, vol. 60, p. 425, 1992. View at Google Scholar
  44. Q.-R. Zhang, “Relativity and impossibility of superluminal motion,” Chinese Physics B, vol. 21, Article ID 110301, 2012. View at Google Scholar
  45. B. Macke and B. Ségard, “From Sommerfeld and Brillouin forerunners to optical precursors,” Physical Review A, vol. 87, Article ID 043830, 2013. View at Google Scholar
  46. J. S. Bell and D. Weaire, “George Francis FitzGerald,” Physics World, vol. 5, no. 9, pp. 31–35, 1992. View at Google Scholar
  47. A. Lampa, “Wie erscheint nach der Relativitätstheorie ein bewegter Stab einem ruhenden Beobachter?” Zeitschrift für Physik, vol. 27, no. 1, pp. 138–148, 1924. View at Publisher · View at Google Scholar · View at Scopus
  48. U. Kraus, “First-person visualizations of the special and general theory of relativity,” European Journal of Physics, vol. 29, no. 1, pp. 1–13, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. T. Müller and D. Weiskopf, “Special-relativistic visualization,” Computing in Science and Engineering, vol. 13, no. 4, Article ID 5931490, pp. 85–93, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. H. G. Winful, ““Nature of superluminal” barrier tunneling,” Physical Review Letters, vol. 90, Article ID 023901, 2003. View at Google Scholar
  51. H. G. Winful, “Tunneling time, the Hartman effect, and superluminality: a proposed resolution of an old paradox,” Physics Reports, vol. 436, pp. 1–69, 2006. View at Google Scholar
  52. M. Rinaldi, “Superluminal dispersion relations and the Unruh effect,” Physical Review D, vol. 77, Article ID 124029, 2008. View at Google Scholar
  53. B. Zhang, Q.-Y. Cai, and M.-S. Zhan, “The temperature in Hawking radiation as tunneling,” Physics Letters B, vol. 671, no. 2, pp. 310–313, 2009. View at Publisher · View at Google Scholar · View at MathSciNet
  54. R. Schützhold and W. G. Unruh, “Hawking radiation in an electromagnetic waveguide?” Physical Review Letters, vol. 95, Article ID 031301, 2005. View at Google Scholar
  55. S. Hopper and C. R. Evans, “Metric perturbations from eccentric orbits on a Schwarzschild black hole. I. Oddparity Regge-Wheeler to Lorenz gauge transformation and two new methods to circumvent the Gibbs phenomenon,” Physical Review D, vol. 87, Article ID 064008, 2013. View at Google Scholar
  56. A. O. Caldeira and A. J. Leggett, “Influence of dissipation on quantum tunneling in macroscopic systems,” Physical Review Letters, vol. 46, no. 4, pp. 211–214, 1981. View at Publisher · View at Google Scholar · View at Scopus
  57. M. A. Sillanpää, R. Khan, T. T. Heikkilä, and P. J. Hakonen, “Macroscopic quantum tunneling in nanoelectromagnetical systems,” Physical Review B, vol. 84, Article ID 195433, 2011. View at Google Scholar
  58. W. Franz, “Elektroneninterferenzen im Magnetfeld,” Verhandlungen der Deutchen Physikalischen Gesellschaft, vol. 65, 1939. View at Google Scholar
  59. W. Franz, “Über zwei unorthodoxe Interferenzversuche,” Zeitschrift für Physik, vol. 184, pp. 85–91, 1965. View at Google Scholar
  60. H. Batelaan and A. Tonomura, “The Aharonov-Bohm effects: variations on a subtle theme,” Physics Today, vol. 62, no. 9, pp. 38–43, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. J. Mac Cullagh, “An essay towards a dynamical theory of cristtaline reflexion and refraction,” Transaction of the Royal Irish Academy, vol. 21, pp. 17–50, 1839. View at Google Scholar