Table of Contents
International Journal of Oceanography
Volume 2009, Article ID 232513, 19 pages
http://dx.doi.org/10.1155/2009/232513
Research Article

Chlorophylls and Phycoerythrins as Markers of Environmental Forcings Including Cyclone Erica Effect (March 2003) on Phytoplankton in the Southwest Lagoon of New Caledonia and Oceanic Adjacent Area

1Laboratoire ARAGO, Université Pierre et Marie Curie-Paris 6, Avenue Fontaulé, BP44, 66650 Banyuls-sur-Mer, France
2Laboratoire d’Océanographie Biologique de Banyuls, CNRS, UMR7621, Avenue Fontaulé, BP44, 66650 Banyuls-sur-Mer, France
3Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Cidade Universitária-CCS-Bloco A-sala A63, Ilha do Governador, Rio de Janeiro 21941-590 RJ, Brazil
4Institut de Recherche pour le Développement, UR Camélia (UR 103), BP A5, 98848 Nouméa Cedex, New Caledonia, France
5Centre Technique Littoral, Lyonnaise des Eaux, Technopôle Izarbel, 64210 Bidart, France
6ECOLAG/UMR 5119, Université Montpellier II, CC 093, 34095 Montpellier Cedex 05, France
7Université de Toulouse, IRD, LEGOS, 14 avenue Edouard Belin, 31400 Toulouse, France

Received 6 February 2009; Accepted 3 September 2009

Academic Editor: Robert Frouin

Copyright © 2009 J. Neveux et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Partensky, J. Blanchot, F. Lantoine, J. Neveux, and D. Marie, “Vertical structure of picophytoplankton at different trophic sites of the tropical northeastern Atlantic Ocean,” Deep-Sea Research Part I, vol. 43, no. 8, pp. 1191–1213, 1996. View at Publisher · View at Google Scholar · View at Scopus
  2. D. J. Mackey, J. Blanchot, H. W. Higgins, and J. Neveux, “Phytoplankton abundances and community structure in the equatorial Pacific,” Deep-Sea Research Part II, vol. 49, no. 13-14, pp. 2561–2582, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Rougerie, Le Lagon Sud-ouest de la Nouvelle-Calédonie: spécificité hydrologique, dynamique et productivité, Etudes et Thèses, ORSTOM, Paris, France, 1986.
  4. D. Binet and R. Le Borgne, “The coastal station of Noumea: ten years of observations about the hydrology and pelagos of the south-west lagoon of New-Caledonia,” Archives des Sciences de la Mer, Biologie Marine 2, Editions IRD, Centre Nouméa, Paris, France, 1996. View at Google Scholar
  5. S. Jacquet, B. Delesalle, J.-P. Torréton, and J. Blanchot, “Response of phytoplankton communities to increased anthropogenic influences (southwestern lagoon, New Caledonia),” Marine Ecology Progress Series, vol. 320, pp. 65–78, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. J.-P. Torréton, E. Rochelle-Newall, A. Jouon, V. Faure, S. Jacquet, and P. Douillet, “Correspondence between the distribution of hydrodynamic time parameters and the distribution of biological and chemical variables in a semi-enclosed coral reef lagoon,” Estuarine, Coastal and Shelf Science, vol. 74, no. 4, pp. 766–776, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Rochelle-Newall, J.-P. Torréton, X. Mari, and O. Pringault, “Phytoplankton-bacterioplankton coupling in a subtropical South Pacific coral reef lagoon,” Aquatic Microbial Ecology, vol. 50, no. 3, pp. 221–229, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Le Borgne, P. Douillet, R. Fichez, and J.-P. Torréton, “Hydrography and plankton temporal variabilities at different time scales in the southwest lagoon of New Caledonia: a review,” Marine Pollution Bulletin. In press.
  9. J.-P. Torréton, E. Rochelle-Newall, O. Pringault, S. Jacquet, V. Faure, and E. Briand, “Variability of primary and bacterial production in a coral reef lagoon (New Caledonia),” Marine Pollution Bulletin. In press.
  10. R. Fichez, S. Chifflet, P. Douillet et al., “Biogeochemical typology and temporal variability of lagoon waters in a coral reef ecosystem subject to terrigeneous and anthropogenic inputs (New Caledonia),” Marine Pollution Bulletin. In press.
  11. S. Bujan, C. Grenz, R. Fichez, and P. Douillet, “Evolution saisonnière du cycle biogéochimique dans le Lagon Sud-ouest de Nouvelle-Calédonie. Application d’un modèle compartimental,” Comptes Rendus de l’Académie des Sciences. Série III, vol. 323, no. 2, pp. 225–233, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Pinazo, S. Bujan, P. Douillet, R. Fichez, C. Grenz, and A. Maurin, “Impact of wind and freshwater inputs on phytoplankton biomass in the coral reef lagoon of New Caledonia during the summer cyclonic period: a coupled three-dimensional biogeochemical modeling approach,” Coral Reefs, vol. 23, no. 2, pp. 281–296, 2004. View at Google Scholar · View at Scopus
  13. Y. Dandonneau and F. Gohin, “Meridional and seasonal variations of the sea surface chlorophyll concentration in the southwestern tropical Pacific (14 to 32S, 160 to 175E),” Deep Sea Research Part A, vol. 31, no. 12, pp. 1377–1393, 1984. View at Google Scholar · View at Scopus
  14. R. Le Borgne, Y. Dandonneau, and L. Lemasson, “The problem of the island mass effect on chlorophyll and zooplankton standing crops around Mare ( Loyalty Islands) and New Caledonia,” Bulletin of Marine Science, vol. 37, no. 2, pp. 450–459, 1985. View at Google Scholar · View at Scopus
  15. C. Hénin and G. R. Cresswell, “Upwelling along the western barrier reef of New Caledonia,” Marine and Freshwater Research, vol. 56, no. 7, pp. 1005–1010, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Zapata, F. Rodriguez, and J. L. Garrido, “Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases,” Marine Ecology Progress Series, vol. 195, pp. 29–45, 2000. View at Google Scholar · View at Scopus
  17. J. Neveux and F. Lantoine, “Spectrofluorometric assay of chlorophylls and phaeopigments using the least squares approximation technique,” Deep-Sea Research Part I, vol. 40, no. 9, pp. 1747–1765, 1993. View at Google Scholar · View at Scopus
  18. M. M. B. Tenório, R. Le Borgne, M. Rodier, and J. Neveux, “The impact of terrigeneous inputs on the Bay of Ouinné (New Caledonia) phytoplankton communities: a spectrofluorometric and microscopic approach,” Estuarine, Coastal and Shelf Science, vol. 64, no. 2-3, pp. 531–545, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Wyman, “An in vivo method for the estimation of phycoerythrin concentrations in marine cyanobacteria (Synechococcus spp.),” Limnology and Oceanography, vol. 37, pp. 1300–1306, 1992. View at Google Scholar
  20. F. Lantoine and J. Neveux, “Spatial and seasonal variations in abundance and spectral characteristics of phycoerythrins in the tropical northeastern Atlantic Ocean,” Deep-Sea Research Part I, vol. 44, no. 2, pp. 223–246, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. S. W. Jeffrey and N. A. Welschmeyer, “Spectrophotometric and fluorometric equations in common use in oceanography,” in Phytoplankton Pigments in Oceanography, S. W. Jeffrey, R. F. C. Mantoura, and S. W. Wright, Eds., pp. 597–615, SCOR UNESCO, 1997. View at Google Scholar
  22. S. Andréfouët, G. Cabioch, B. Flamand, and B. Pelletier, “A reappraisal of the diversity of geomorphological and genetic processes of New Caledonian coral reefs: a synthesis from optical remote sensing, coring and acoustic multibeam observations,” Coral Reefs, vol. 28, no. 3, pp. 691–707, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Douillet, S. Ouillon, and E. Cordier, “A numerical model for fine suspended sediment transport in the southwest lagoon of New Caledonia,” Coral Reefs, vol. 20, no. 4, pp. 361–372, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. A. G. Dalto, A. Grémare, A. Dinet, and D. Fichet, “Muddy-bottom meiofauna responses to metal concentrations and organic enrichment in New Caledonia south-west lagoon,” Estuarine, Coastal and Shelf Science, vol. 67, no. 4, pp. 629–644, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Jacquet, Impact des apports en nutriments sur le réseau trophique planctonique du Lagon Sud-ouest de Nouvelle-Calédonie, Ph.D. thesis, University of Paris VI, Paris, France, 2005.
  26. G. Kattner, “Storage of dissolved inorganic nutrients in seawater: poisoning with mercuric chloride,” Marine Chemistry, vol. 67, no. 1-2, pp. 61–66, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. J. D. H. Strickland and T. R. Parsons, “A practical handbook of sea-water analysis,” Fisheries Research Board of Canada, vol. 67, p. 311, 1972. View at Google Scholar
  28. P. Raimbault, G. Slawyk, B. Coste, and J. Fry, “Feasibility of using an automated colorimetric procedure for the determination of seawater nitrate in the 0 to 100 nM range: examples from field and culture,” Marine Biology, vol. 104, no. 2, pp. 347–351, 1990. View at Google Scholar · View at Scopus
  29. J. Murphy and J. P. Riley, “A modified single solution method for the determination of phosphate in natural waters,” Analytica Chimica Acta, vol. 27, pp. 31–36, 1962. View at Google Scholar · View at Scopus
  30. R. M. Holmes, A. Aminot, R. Kérouel, B. A. Hooker, and B. J. Peterson, “A simple and precise method for measuring ammonium in marine and freshwater ecosystems,” Canadian Journal of Fisheries and Aquatic Sciences, vol. 56, no. 10, pp. 1801–1808, 1999. View at Google Scholar · View at Scopus
  31. K. Grasshoff, M. Eherhardt, and K. Kremling, Methods of Seawater Analysis, Chemie, Weinheim, Gernany, 2nd edition, 1983.
  32. J. Neveux, C. Dupouy, J. Blanchot, A. Le Bouteiller, M. R. Landry, and S. L. Brown, “Diel dynamics of chlorophylls in high-nutrient, low-chlorophyll waters of the equatorial Pacific (180): interactions of growth, grazing, physiological responses, and mixing,” Journal of Geophysical Research C, vol. 108, no. C12, article 8140, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Partensky, N. Hoepffner, W. K. W. Li, O. Ulloa, and D. Vaulot, “Photoacclimatation of Prochlorococcus sp. (Prochlorophyta) strains isolated from the North Atlantic and the Mediterranean Sea,” Plant Physiology, vol. 101, pp. 295–296, 1993. View at Google Scholar
  34. W. A. Sidler, “Phycobilisome and phycobiliprotein structures,” in The Molecular Biology of Cyanobacteria, D. A. Bryant, Ed., pp. 139–216, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994. View at Google Scholar
  35. J. Neveux, M. M. B. Tenório, C. Dupouy, and T. A. Villareal, “Spectral diversity of phycoerythrins and diazotroph abundance in tropical waters,” Limnology and Oceanography, vol. 51, no. 4, pp. 1689–1698, 2006. View at Google Scholar · View at Scopus
  36. L. Campbell and D. Vaulot, “Photosynthetic picoplankton community structure in the subtropical North Pacific Ocean near Hawaii (station ALOHA),” Deep-Sea Research Part I, vol. 40, no. 10, pp. 2043–2060, 1993. View at Google Scholar · View at Scopus
  37. S. W. Jeffrey and M. Vesk, “Introduction to marine phytoplankton and their pigment signatures,” in Phytoplankton Pigments in Oceanography, S. W. Jeffrey, R. F. C. Mantoura, and S. W. Wright, Eds., pp. 37–84, SCOR UNESCO, 1997. View at Google Scholar
  38. M. D. Mackey, D. J. Mackey, H. W. Higgins, and S. W. Wright, “CHEMTAX—a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton,” Marine Ecology Progress Series, vol. 144, no. 1–3, pp. 265–283, 1996. View at Google Scholar · View at Scopus
  39. Y. Dandonneau, “A method for the rapid determination of chlorophyll plus phaeopigments in samples collected by merchant ships,” Deep Sea Research Part A, vol. 29, no. 5, pp. 647–654, 1982. View at Google Scholar · View at Scopus
  40. O. Holm-Hansen, C. J. Lorenzen, R. W. Holmes, and J. D. H. Strickland, “Fluorometric determination of chlorophyll,” Journal du Conseil International pour l’Exploration de la Mer, vol. 30, no. 1, pp. 3–15, 1999. View at Google Scholar
  41. J. Neveux, “Dosage de la chlorophylle a et de la phéophytine a par fluorimétrie,” Annales Institut Océanographique, vol. 52, pp. 165–174, 1976. View at Google Scholar
  42. N. Revelante and M. Gilmartin, “Dynamics of phytoplankton in the Great Barrier Reef lagoon,” Journal of Plankton Research, vol. 4, pp. 47–76, 1982. View at Google Scholar
  43. M. A. Burford, P. C. Rothlisberg, and Y. G. Wang, “Spatial and temporal distribution of tropical phytoplankton species and biomass in the Gulf of Carpentaria, Australia,” Marine Ecology Progress Series, vol. 118, no. 1–3, pp. 255–266, 1995. View at Google Scholar · View at Scopus
  44. P. R. F. Bell, “Eutrophication and coral reefs—some examples in the Great Barrier Reef lagoon,” Water Research, vol. 26, no. 5, pp. 553–568, 1992. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Rodier and R. Le Borgne, “Population dynamics and environmental conditions affecting Trichodesmium spp. (filamentous cyanobacteria) blooms in the south-west lagoon of New Caledonia,” Journal of Experimental Marine Biology and Ecology, vol. 358, no. 1, pp. 20–32, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. S. M. F. Gianesella-Galvão, M. P. D. F. Costa, and M. B. B. Kutner, “Bloom of Oscillatoria (Trichodesmium) erythraea (Ehr.) in coastal waters of the southwest Atlantic,” Publicação especial do Instituto Oceanográphico. São Paulo, vol. 11, pp. 133–140, 1995. View at Google Scholar
  47. C. Lugomela, T. J. Lyimo, I. Bryceson, A. K. Semesi, and B. Bergman, “Trichodesmium in coastal waters of Tanzania: diversity, seasonality, nitrogen and carbon fixation,” Hydrobiologia, vol. 477, no. 1–3, pp. 1–13, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. A. G. Ramos, A. Martel, G. A. Codd et al., “Bloom of the marine diazotrophic cyanobacterium Trichodesmium erythraeum in the Northwest African Upwelling,” Marine Ecology Progress Series, vol. 301, pp. 303–305, 2005. View at Google Scholar · View at Scopus
  49. R. Endean, “Destruction and recovery of coral reef communities,” in Biology and Geology of Coral Reefs. Vol. 3, Biology 2, O. A. Jones and R. Endean, Eds., pp. 215–254, Academic Press, London, UK, 1976. View at Google Scholar
  50. I. Muslim and G. Jones, “The seasonal variation of dissolved nutrients, chlorophyll a and suspended sediments at Nelly Bay, Magnetic Island,” Estuarine, Coastal and Shelf Science, vol. 57, no. 3, pp. 445–455, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. W. J. Ullman and M. W. Sandstrom, “Dissolved nutrient fluxes from the nearshore sediments of Bowling Green Bay, central Great Barrier Reef Lagoon (Australia),” Estuarine, Coastal and Shelf Science, vol. 24, no. 3, pp. 289–303, 1987. View at Google Scholar · View at Scopus
  52. A. J. Gabric, P. Hoffenberg, and W. Boughton, “Spatio-temporal variability in surface chlorophyll distribution in the central Great Barrier Reef as derived from CZCS imagery,” Australian Journal of Marine and Freshwater Research, vol. 41, no. 3, pp. 313–324, 1990. View at Google Scholar · View at Scopus
  53. P. W. Glynn, L. R. Almodovar, and J. G. Gonzales, “Effects of Hurricane Edith on marine life in La Parguera, Porto Rico,” Caribbean Journal of Science, vol. 4, pp. 335–345, 1964. View at Google Scholar
  54. M. J. Furnas, “Cyclonic disturbance and a phytoplankton bloom in a tropical shelf ecosystem,” in Red Tides: Biology, Environmental Science and Toxicology, T. Okaichi, D. M. Anderson, and T. Nemoto, Eds., pp. 273–276, Elsevier, New York, NY, USA, 1989. View at Google Scholar
  55. B. Delesalle, M. Pichon, M. Frankignoulle, and J. -P. Gattuso, “Effects of a cyclone on coral reef phytoplankton biomass, primary production and composition (Moorea Island, French Polynesia),” Journal of Plankton Research, vol. 15, no. 12, pp. 1413–1423, 1993. View at Google Scholar · View at Scopus
  56. N. D. Crosbie and M. J. Furnas, “Abundance, distribution and flow-cytometric characterization of picophytoprokaryote populations in central (17S) and southern (20S) shelf waters of the Great Barrier Reef,” Journal of Plankton Research, vol. 23, no. 8, pp. 809–828, 2001. View at Google Scholar · View at Scopus
  57. B. Subrahmanyam, K. H. Rao, N. Srinivasa Rao, V. S. N. Murty, and R. J. Sharp, “Influence of a tropical cyclone on chlorophyll-a concentration in the Arabian Sea,” Geophysical Research Letters, vol. 29, no. 22, pp. 1–4, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. W. R. Boynton, W. M. Kemp, and C. W. Keefe, “A comparative analysis of nutrients and other factors influencing estuarine phytoplankton production,” in Estuarine Comparisons, V. S. Keneddy, Ed., pp. 69–90, Academic Press, London, UK, 1982. View at Google Scholar
  59. T. C. Malone, L. H. Crocker, S. E. Pike, and B. Wendler, “Influences of river flow on the dynamics of phytoplankton production in a partially stratified estuary,” Marine Ecology Progress Series, vol. 48, pp. 235–249, 1988. View at Google Scholar
  60. L. Charpy and J. Blanchot, “Photosynthetic picoplankton in French Polynesian atoll lagoons: estimation of taxa contribution to biomass and production by flow cytometry,” Marine Ecology Progress Series, vol. 162, pp. 57–70, 1998. View at Google Scholar · View at Scopus
  61. J. Blanchot and L. Charpy, “Picophytoplanktonic community structure in the subtropical Pacific Ocean: a comparison between the offshore and coastal ocean and the closed and open lagoons, in relation with the nitrogen nutrients availability,” in Proceedings of the 8th International Coral Reef Symposium, pp. 821–826, 1997.
  62. K. Tada, K. Sakai, Y. Nakano, A. Takemura, and S. Montani, “Size-fractionated phytoplankton biomass in coral reef waters off Sesoko Island, Okinawa, Japan,” Journal of Plankton Research, vol. 25, no. 8, pp. 991–997, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. P. Bonneton, J. -P Lefebvre, P. Bretel, S. Ouillon, and P. Douillet, “Tidal modulation of wave-setup and wave-induced currents on the Aboré coral reef, New Caledonia,” Journal of Coastal Research, vol. 50, pp. 762–766, 2007. View at Google Scholar
  64. A. M. Wood, D. A. Phinney, and C. S. Yentsch, “Water column transparency and the distribution of spectrally distinct forms of phycoerythrin-containing organisms,” Marine Ecology Progress Series, vol. 162, pp. 25–31, 1998. View at Google Scholar · View at Scopus
  65. A. M. Wood, M. Lipsen, and P. Coble, “Fluorescence-based characterization of phycoerythrin-containing cyanobacterial communities in the Arabian Sea during the Northeast and early Southwest Monsoon (1994-1995),” Deep-Sea Research Part II, vol. 46, no. 8-9, pp. 1769–1790, 1999. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Ganachaud, A. Vega, M. Rodier et al., “Observed impact of upwelling on water properties and biological activity off the southwest coast of New Caledonia,” Marine Pollution Bulletin. In press.
  67. J. C. Andrews and P. Gentien, “Upwelling as a source of nutrients for the Great Barrier Reef ecosystems: a solution to Darwin’s question?” Marine Ecology Progress Series, vol. 8, pp. 257–269, 1982. View at Google Scholar
  68. R. E. Thomson and E. J. Wolanski, “Tidal period upwelling within Raine Island entrance Great Barrier Reef,” Journal of Marine Research, vol. 42, no. 4, pp. 787–808, 1984. View at Google Scholar · View at Scopus