Table of Contents
International Journal of Oceanography
Volume 2011 (2011), Article ID 920414, 10 pages
http://dx.doi.org/10.1155/2011/920414
Research Article

Environmental Influences on South African Fish Catch: South Coast Transition

1Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa
2Physics Department, University of Puerto Rico, Mayaguez, PR 00681, USA

Received 12 May 2011; Revised 26 November 2011; Accepted 29 November 2011

Academic Editor: Robert Frouin

Copyright © 2011 Mark R. Jury. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Lluch-Belda, R. Crawford, T. Kawasaki et al., “Worldwide fluctuations of sardine and anchovy stock. The regime problem,” African Journal of Marine Science, vol. 8, pp. 195–205, 1989. View at Google Scholar
  2. D. Lluch-Belda, R. A. Schwartzlose, R. Serra et al., “Sardine and anchovy regime fluctuations of abundance in four regions of the world oceans: a workshop report,” Fisheries Oceanogaphy, vol. 1, no. 4, pp. 339–347, 1993. View at Google Scholar
  3. H. A. Regier and J. D. Meisner, “Anticipated effects of climate change on freshwater fishes and their habitat,” Bulletin of the American Fisheries Society, vol. 15, pp. 10–15, 1992. View at Google Scholar
  4. A. Bakun, “Global climate change and intensification of coastal ocean upwelling,” Science, vol. 247, no. 4939, pp. 198–201, 1990. View at Google Scholar · View at Scopus
  5. A. Bakun, Ocean Processes and Marine Population Dynamics, California Sea Grant and Centro de Inesigationes Biologicas, La Paz , Mexico, 1996.
  6. M. H. Glantz, “Does history have a future? Forecasting climate change effects on fisheries by analogy,” Fisheries, vol. 15, no. 6, pp. 39–45, 1990. View at Google Scholar
  7. T. Kawasaki, “Climate-dependent fluctuations in Far Eastern Sardine Population and their impacts on fisheries and society,” in Climate Variability, Climate Change and Fisheries, M. Glantz, Ed., pp. 325–355, Cambridge University Press, 1992. View at Google Scholar
  8. T. Kawasaki, “Mechanisms governing fluctuations in pelagic fish populations,” in Benguela trophic Functioning. South African Journal of marine Sciences, A. Paine et al., Ed., vol. 12, pp. 873–879, 1992. View at Google Scholar
  9. T. Kawasaki, “A decade of the regime shift of small pelagics. FAO expert consultation (1983) to the PICES III (1994),” Bulletin of the Japanese Society of Fisheries Oceanography, vol. 58, pp. 321–333, 1994. View at Google Scholar
  10. R. J. Beamish, D. J. Noakes, G. A. McFarlane, L. Klyashtorin, V. V. Ivanov, and V. Kurashov, “The regime concept and natural trends in the production of Pacific salmon,” Canadian Journal of Fisheries and Aquatic Sciences, vol. 56, no. 3, pp. 516–526, 1999. View at Google Scholar · View at Scopus
  11. FAO, “Chronicles of Marine fishery landings (1950–1994) Trend analysis and fisheries potential,” Fisheries Technical Paper 359, Food and Agriculture Organization of the United Nations, Rome, Italy, 1996. View at Google Scholar
  12. FAO, Review of the State of World Fishery Resources: Marine Fisheries (by Marine Resources Service, Fishery Resources Division, Fisheries Department). Fisheries Circular 920, Food and Agriculture Organization of the United Nations, Rome, Italy, 1997.
  13. G. D. Sharp, J. Csirke, and S. Garcia, “Modeling fisheries: what was the question?” in Proceedings of the Expert Consultation to Examine the Changes in Abundance and Species Composition of Neritic Fish Resources, G. D. Sharp and J. Csirke, Eds., pp. 1177–1224, FAO Fisheries Report, 1983.
  14. M. E. Schlesinger and N. Ramankutty, “An oscillation in the global climate system of period 65–70 years,” Nature, vol. 367, no. 6465, pp. 723–726, 1994. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Klyashtorin and B. Smirnov, “Climate-dependent salmon and sardine stock fluctuations in the North Pacific,” in Climate Change and Northern Fish Populations, R. Beamish, Ed., vol. 121, pp. 687–689, Canadian Special Publications Fisheries Aquatic Sciences, 1995. View at Google Scholar
  16. L. Klyashtorin and N. Sidorenkov, “Long-term climatic change and pelagic fish stock fluctuations in the Pacific,” Reports of Pacific Research Instuite of Fisheries and Oceanography, vol. 119, pp. 33–54, 1996. View at Google Scholar
  17. L. B. Klyashtorin, “Long-term climate change and main commercial fish production in the Atlantic and Pacific,” Fisheries Research, vol. 37, no. 1–3, pp. 115–125, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Minobe, “A 50–70 year climatic oscillation over the North Pacific and North America,” Geophysical Research Letters, vol. 24, no. 6, pp. 683–686, 1997. View at Google Scholar · View at Scopus
  19. M. R. Jury, W. B. White, and C. J. C. Reason, “Modelling the dominant climate signals around southern Africa,” Climate Dynamics, vol. 23, no. 7-8, pp. 717–726, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Bakun and K. Broad, Climate and Fisheries: interacting paradigms, scales, and policy approaches. The IRI-IPRC Pacific Climate-Fisheries Workshop Honolulu, 2001.
  21. P. Lehodey, J. Alheit, M. Barange et al., “Climate variability, fish, and fisheries,” Journal of Climate, vol. 19, no. 20, pp. 5009–5030, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. R. A. Schwartzlose, J. Alheit, A. Bakun et al., “Worldwide large-scale fluctuations of sardine and anchovy populations,” South African Journal of Marine Science, no. 21, pp. 289–347, 1999. View at Google Scholar · View at Scopus
  23. R. H. Parrish, F. B. Schwing, and R. Mendelssohn, “Mid-latitude wind stress: the energy source for climatic shifts in the North Pacific Ocean,” Fisheries Oceanography, vol. 9, no. 3, pp. 224–238, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. J. J. Agenbag, A. J. Richardson, H. Demarcq, P. Fréon, S. Weeks, and F. A. Shillington, “Estimating environmental preferences of South African pelagic fish species using catch size- and remote sensing data,” Progress in Oceanography, vol. 59, no. 2-3, pp. 275–300, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. M. R. Jury, “Tropical South-East Atlantic response to ENSO as an ecosystem indicator for the southern Benguela,” African Journal of Marine Science, vol. 28, no. 1, pp. 41–50, 2006. View at Google Scholar · View at Scopus
  26. D. B. Lluch-Cota, S. Hernández-Vázquez, and S. E. Lluch- Cota, Empirical Investigation on the Relationship between Climate and Small Pelagic Global Regimes and El Niño-Southern Oscillation (ENSO). FAO Fisheries Circular 934, FAO, Rome, Italy, 1997.
  27. F. P. Chavez, J. Ryan, S. E. Lluch-Cota, and C. M. Ñiquen, “Climate: from anchovies to sardines and back: multidecadal change in the Pacific Ocean,” Science, vol. 299, no. 5604, pp. 217–221, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. M. Tourre, S. E. Lluch-Cota, and W. B. White, “Global multi-decadal ocean climate and small-pelagic fish population,” Environmental Research Letters, vol. 2, no. 3, Article ID 034005, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. K. E. Trenberth and J. W. Hurrell, “Decadal coupled atmosphere-ocean variation in the North Pacific Ocean,” in Climate Change and Northern Fish Populations, R. Beamish, Ed., vol. 121, pp. 14–24, Canadian Special Publications Fisheries Aquatic Sciences, 1995. View at Google Scholar
  30. N. J. Mantua, S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, “A Pacific inter-decadal climate oscillation with impacts on salmon production,” Bulletin of the American Meteorological Society, vol. 78, no. 6, pp. 1069–1079, 1997. View at Google Scholar
  31. L. V. Shannon, “The Benguela ecosystem, Part I. Evolution of the Benguela: physical features and processes,” Oceanography and Marine Biology, vol. 23, pp. 105–182, 1985. View at Google Scholar
  32. L. Hutchings, M. Barange, S. F. Bloomer et al., “Multiple factors affecting South African anchovy recruitment in the spawning, transport and nursery areas,” South African Journal of Marine Science, no. 19, pp. 211–225, 1998. View at Google Scholar · View at Scopus
  33. C. D. van der Lingen, L. J. Shannon, and P. Cury, “Resource and ecosystem variability, including regime shifts, in the Benguela Current system,” in Benguela: Predicting a Large Marine Ecosystem, L. V. Shannon, G. Hempel, P. Malanotte-Rizzoli, C. Moloney, and J. Woods, Eds., pp. 147–185, Elsevier, 2006. View at Google Scholar
  34. L. V. Shannon and G. Nelson, “The Benguela: large scale features and processes and system variability,” in The South Atlantic: Present and Past Circulation, G. Wefer, W. H. Berger, G. Siedler, and D. J. Webb, Eds., pp. 163–210, Springer, Heidelberg, Germany, 1996. View at Google Scholar
  35. C. Roy, C. D. van der Lingen, J. C. Coetzee, and J. R. E. Lutjeharms, “Abrupt environmental shift associated with changes in the distribution of Cape anchovy Engraulis encrasicolus spawners in the southern Benguela,” African Journal of Marine Science, vol. 29, no. 3, pp. 309–319, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. A. MacCall, “Sardine Regimes and mesoscale flow structure,” in Climate and Fisheries: Interacting Paradigms, Scales, and Policy Approaches, A. Bakun and K. Broad, Eds., The IRI-IPRC Pacific Climate-Fisheries Workshop Honolulu, 2001. View at Google Scholar
  37. E. Kalnay, M. Kanamitsu, R. Kistler et al., “The NCEP/NCAR 40-year reanalysis project,” Bulletin of the American Meteorological Society, vol. 77, no. 3, pp. 437–471, 1996. View at Google Scholar · View at Scopus
  38. J. A. Carton and B. S. Giese, “A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA),” Monthly Weather Review, vol. 136, no. 8, pp. 2999–3017, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Demarcq, R. Barlow, and L. Hutchings, “Application of a chlorophyll index derived from satellite data to investigate the variability of phytoplankton in the Benguela ecosystem,” African Journal of Marine Science, vol. 29, no. 2, pp. 271–282, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Torrence and G. P. Compo, “A practical guide to wavelet analysis,” Bulletin of the American Meteorological Society, vol. 79, no. 1, pp. 61–78, 1998. View at Google Scholar · View at Scopus
  41. M. R. Jury, “A thermal front within the marine atmospheric boundary layer over the Agulhas Current south of Africa: composite aircraft observations,” Journal of Geophysical Research, vol. 99, no. 2, pp. 3297–3304, 1994. View at Publisher · View at Google Scholar
  42. M. R. Jury, “A review of the meteorology of the eastern Agulhas Bank,” South African Journal of Science, vol. 90, no. 3, pp. 109–113, 1994. View at Google Scholar · View at Scopus
  43. D. L. Covey and S. Hastenrath, “The Pacific El Niño phenomenon and the Atlantic circulation,” Monthly Weather Review, vol. 106, pp. 1280–1287, 1978. View at Google Scholar
  44. D. B. Enfield and D. A. Mayer, “Tropical atlantic sea surface temperature variability and its relation to El Niño-Southern Oscillation,” Journal of Geophysical Research C, vol. 102, no. 1, pp. 929–945, 1997. View at Google Scholar · View at Scopus
  45. M. R. Jury, H. Mulenga, and H. Rautenbach, “Tropical Atlantic variability and indo-Pacific ENSO: statistical analysis and numerical simulation,” Global Atmosphere and Ocean System, vol. 7, no. 2, pp. 107–124, 2000. View at Google Scholar · View at Scopus
  46. M. J. Roberts and W. H. H. Sauer, “Environment: the key to understanding the South African chokka squid life cycle and fishery?” Antarctic Science, vol. 6, pp. 249–258, 1994. View at Google Scholar
  47. E. H. Schumann, A. L. Cohen, and M. R. Jury, “Coastal sea surface temperature variability along the south coast of South Africa and the relationship to regional and global climate,” Journal of Marine Research, vol. 53, no. 2, pp. 231–248, 1995. View at Google Scholar · View at Scopus