Table of Contents
International Journal of Oceanography
Volume 2012 (2012), Article ID 473162, 13 pages
http://dx.doi.org/10.1155/2012/473162
Research Article

Spatiotemporal Spectral Variations of AOT in India’s EEZ over Arabian Sea: Validation of OCM-II

1Physical Meteorology and Aerology Division, Indian Institute of Tropical Meteorology, Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
2DPD, Oceansat-II UP (OCM2 Validation), Space Applications Centre, ISRO, Ahmedabad 380 015, India

Received 1 May 2012; Revised 12 July 2012; Accepted 18 August 2012

Academic Editor: Swadhin Behera

Copyright © 2012 C. P. Simha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. IPCC, “Report to IPCC from Scientific Assessment Group (WGI,” in Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, UK, 1995. View at Google Scholar
  2. J. A. Coakley, R. D. Cess, and F. B. Yurevich, “The effect of tropospheric aerosols on the earth's radiation budget: a parameterization for climate models,” Journal of the Atmospheric Sciences, vol. 40, no. 1, pp. 116–138, 1983. View at Google Scholar · View at Scopus
  3. Y. J. Kaufman, D. Tanré, H. R. Gordon et al., “Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect,” Journal of Geophysical Research D, vol. 102, no. 14, pp. 16815–16830, 1997. View at Google Scholar · View at Scopus
  4. I. Das and M. Mohan, “Detection of marine aerosols using ocean colour sensors,” Mausam, vol. 54, pp. 327–334, 2003. View at Google Scholar
  5. R. J. Charlson, S. E. Schwartz, J. M. Hales et al., “Climate forcing by anthropogenic aerosols,” Science, vol. 255, no. 5043, pp. 423–430, 1992. View at Google Scholar · View at Scopus
  6. O. Dubovik, B. Holben, T. F. Eck et al., “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” Journal of the Atmospheric Sciences, vol. 59, no. 3, pp. 590–608, 2002. View at Google Scholar · View at Scopus
  7. C. Tomasi, V. Vitale, A. Lupi, A. Cacciari, S. Marani, and U. Bonafé, “Marine and continental aerosol effects on the upwelling solar radiation flux in Southern Portugal during the ACE-2 experiment,” Annals of Geophysics, vol. 46, no. 2, pp. 467–479, 2003. View at Google Scholar · View at Scopus
  8. Intergovernmental Panel on Climate Change (IPCC), “Summary for policy makers,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning et al., Eds., Cambridge University Press, Cambridge, UK, 2007. View at Google Scholar
  9. M. Rinaldi, S. Decesari, E. Finessi et al., “Primary and secondary organic marine aerosol and oceanic biological activity: recent results and new perspectives for future studies,” Advances in Meteorology, vol. 2010, Article ID 310682, 10 pages, 2010. View at Publisher · View at Google Scholar
  10. X. Liu, R. C. Easter, S. J. Ghan et al., “Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5,” Geoscientific Model Development, vol. 5, pp. 709–739, 2012. View at Google Scholar
  11. G. W. Mann, K. S. Carslaw, D. A. Ridley et al., “Intercomparison of modal and sectional aerosol microphysics representations within the same 3-D global chemical transport model,” Atmospheric Chemistry and Physics, vol. 12, pp. 4449–4476, 2012. View at Google Scholar
  12. P. C. S. Devara, S. K. Saha, P. E. Raj et al., “A four-year climatology of total column tropical urban aerosol, ozone and water vapour distributions over Pune, India,” Journal of Aerosol and Air Quality Research, vol. 5, pp. 103–114, 2005. View at Google Scholar
  13. P. C. S. Devara, R. S. Maheskumar, P. E. Raj, K. K. Dani, and S. M. Sonbawne, “Some features of columnar aerosol optical depth, ozone and precipitable water content observed over land during the INDOEX-IFP99,” Meteorologische Zeitschrift, vol. 10, no. 2, pp. 123–130, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Morys, F. M. Mims, S. Hagerup et al., “Design, calibration, and performance of MICROTOPS II handheld ozone monitor and Sun photometer,” Journal of Geophysical Research D, vol. 106, no. 13, pp. 14573–14582, 2001. View at Google Scholar · View at Scopus
  15. C. Ichoku, R. Levy, Y. J. Kaufman et al., “Analysis of the performance characteristics of the five-channel Microtops II Sun photometer for measuring aerosol optical thickness and precipitable water vapor,” Journal of Geophysical Research D, vol. 107, article 4179, 17 pages, 2002. View at Google Scholar · View at Scopus
  16. K. S. Behera, Ed., Maritime Heritage of India, Aryan Books International, 1999.
  17. J. N. Porter, M. Miller, C. Pietras, and C. Motell, “Ship-based sun photometer measurements using microtops sun photometers,” Journal of Atmospheric and Oceanic Technology, vol. 18, no. 5, pp. 765–774, 2001. View at Google Scholar · View at Scopus
  18. K. D. Knobelspiesse, C. Pietras, and G. S. Fargion, “Sunpointing-error correction for sea deployment of the MICROTOPS II handheld sun photometer,” Journal of Atmospheric and Oceanic Technology, vol. 20, pp. 767–771, 2003. View at Google Scholar
  19. A. Smirnov, B. N. Holben, I. Slutsker et al., “Maritime aerosol network as a component of aerosol robotic network,” Journal of Geophysical Research D, vol. 114, no. 6, Article ID D06204, 10 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. N. T. O'Neill, A. Ignatov, B. N. Holben, and T. F. Eck, “The lognormal distribution as a reference for reporting aerosol optical depth statistics; empirical tests using multi-year, multi-site AERONET sunphotometer data,” Geophysical Research Letters, vol. 27, no. 20, pp. 3333–3336, 2000. View at Google Scholar · View at Scopus
  21. P. Chauhan, N. Sanwlani, and R. R. Navalgund, “Aerosol optical depth variability in the northeastern Arabian sea during winter monsoon: a study using in-situ and satellite measurements,” Indian Journal of Marine Sciences, vol. 38, no. 4, pp. 390–396, 2009. View at Google Scholar · View at Scopus
  22. M. C. R. Kalapureddy and P. C. S. Devara, “Pre-monsoon aerosol optical properties and spatial distribution over the Arabian Sea during 2006,” Journal of Atmospheric Research, vol. 95, no. 2-3, pp. 186–196, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. T. F. Eck, B. N. Holben, J. S. Reid et al., “Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols,” Journal of Geophysical Research D, vol. 104, no. 24, pp. 31333–31349, 1999. View at Google Scholar · View at Scopus
  24. A. Jayaraman, D. Lubin, S. Ramachandran et al., “Direct observations of aerosol radiative forcing over the tropical Indian Ocean during the January-February 1996 pre-INDOEX cruise,” Journal of Geophysical Research D, vol. 103, no. 12, pp. 13827–13836, 1998. View at Google Scholar · View at Scopus
  25. B. N. Holben, D. Tanré, A. Smirnov et al., “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” Journal of Geophysical Research D, vol. 106, no. 11, pp. 12067–12097, 2001. View at Google Scholar · View at Scopus
  26. V. E. Cachorro, R. Vergaz, and A. M. De Frutos, “A quantitative comparison of α-Å turbidity parameter retrieved in different spectral ranges based on spectroradiometer solar radiation measurements,” Atmospheric Environment, vol. 35, no. 30, pp. 5117–5124, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Pace, A. di Sarra, D. Meloni, S. Piacentino, and P. Chamard, “Aerosol optical properties at Lampedusa (Central Mediterranean). 1. Influence of transport and identification of different aerosol types,” Atmospheric Chemistry and Physics, vol. 6, no. 3, pp. 697–713, 2006. View at Google Scholar · View at Scopus
  28. D. G. Kaskaoutis, H. D. Kambezidis, N. Hatzianastassiou, P. G. Kosmopoulos, and K. V. S. Badarinath, “Aerosol climatology: on the discrimination of aerosol types over four AERONET sites,” Atmospheric Chemistry and Physics Discussions, vol. 7, no. 3, pp. 6357–6411, 2007. View at Google Scholar · View at Scopus
  29. T. F. Eck, B. N. Holben, O. Dubovik et al., “Column-integrated aerosol optical properties over the Maldives during the northeast monsoon for 1998–2000,” Journal of Geophysical Research D, vol. 106, no. 22, pp. 28555–28566, 2001. View at Google Scholar · View at Scopus
  30. T. F. Eck, B. N. Holben, D. E. Ward et al., “Characterization of the optical properties of biomass burning aerosols in Zambia during the 1997 ZIBBEE field campaign,” Journal of Geophysical Research D, vol. 106, no. 4, pp. 3425–3448, 2001. View at Google Scholar · View at Scopus
  31. M. Masmoudi, M. Chaabane, D. Tanré, P. Gouloup, L. Blarel, and F. Elleuch, “Spatial and temporal variability of aerosol: size distribution and optical properties,” Journal of Atmospheric Research, vol. 66, no. 1-2, pp. 1–19, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. D. H. Kim, B. J. Sohn, T. Nakajima et al., “Aerosol optical properties over east Asia determined from ground-based sky radiation measurements,” Journal of Geophysical Research D, vol. 109, no. 2, Article ID D02209, 18 pages, 2004. View at Google Scholar · View at Scopus
  33. K. O. Ogunjobi, Z. He, K. W. Kim, and Y. J. Kim, “Aerosol optical depth during episodes of Asian dust storms and biomass burning at Kwangju, South Korea,” Atmospheric Environment, vol. 38, no. 9, pp. 1313–1323, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. M. C. R. Kalapureddy, D. G. Kaskaoutis, P. E. Raj et al., “Identification of aerosol type over the Arabian Sea in the premonsoon season during the Integrated Campaign for Aerosols, Gases and Radiation Budget (ICARB),” Journal of Geophysical Research D, vol. 114, no. 17203, Article ID D17203, 12 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. S. K. Satheesh, V. Ramanathan, X. Li-Jones et al., “A model for the natural and anthropogenic aerosols over the tropical Indian Ocean derived from Indian Ocean Experiment data,” Journal of Geophysical Research D, vol. 104, no. 22, pp. 27421–27440, 1999. View at Google Scholar · View at Scopus
  36. K. K. Moorthy, A. Saha, B. S. N. Prasad, K. Niranjan, D. Jhurry, and P. S. Pillai, “Aerosol optical depths over peninsular India and adjoining oceans during the INDOEX campaigns: spatial, temporal, and spectral characteristics,” Journal of Geophysical Research D, vol. 106, no. 22, pp. 28539–28554, 2001. View at Google Scholar · View at Scopus
  37. V. Ramanathan, P. J. Crutzen, J. Lelieveld et al., “Indian Ocean Experiment: an integrated analysis of the climate forcing and effects of the great Indo-Asian haze,” Journal of Geophysical Research D, vol. 106, no. 22, pp. 28371–28398, 2001. View at Google Scholar · View at Scopus
  38. S. S. Babu, V. S. Nair, and K. K. Moorthy, “Seasonal changes in aerosol characteristics over Arabian Sea and their consequence on aerosol short-wave radiative forcing: results from ARMEX field campaign,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 70, no. 5, pp. 820–834, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Smirnov, B. N. Holben, O. Dubovik et al., “Atmospheric aerosol optical properties in the Persian Gulf,” Journal of the Atmospheric Sciences, vol. 59, no. 3, pp. 620–634, 2002. View at Google Scholar · View at Scopus
  40. K. O. Ogunjobi, Z. He, and C. Simmer, “Spectral aerosol optical properties from AERONET Sun-photometric measurements over West Africa,” Journal of Atmospheric Research, vol. 88, no. 2, pp. 89–107, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. I. N. Sokolik, O. B. Toon, and R. W. Bergstrom, “Modeling the rediative characteristics of airborne mineral aerosols at infrared wavelengths,” Journal of Geophysical Research D, vol. 103, no. 8, pp. 8813–8826, 1998. View at Google Scholar · View at Scopus
  42. K. K. Moorthy, S. K. Satheesh, S. S. Babu, and C. B. S. Dutt, “Integrated Campaign for aerosols gases and Radiation Budget (ICARB): an overview,” Journal of Earth System Science, vol. 117, no. 1, pp. 243–262, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. J.-F. Léon, P. Chazette, J. Pelon, F. Dulac, and H. Randriamiarisoa, “Aerosol direct radiative impact over the INDOEX area based on passive and active remote sensing,” Journal of Geophysical Research D, vol. 107, no. 19, article 8006, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. E. J. Welton, K. J. Voss, P. K. Quinn et al., “Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropulse lidars,” Journal of Geophysical Research D, vol. 107, no. 19, article 8019, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. B. Jha and T. N. Krishnamurthi, “Real-time meteorological reanalysis atlas during pre-INDOEX field phase—1998,” Rep. 98-08, INDOEX Publ 20, Tallahassee, Department of Meteorology, Florida State University, 1998.
  46. K. Rajeev, V. Ramanathan, and J. Meywerk, “Regional aerosol distribution and its long-range transport over the Indian Ocean,” Journal of Geophysical Research D, vol. 105, no. 2, pp. 2029–2043, 2000. View at Google Scholar · View at Scopus