Table of Contents
International Journal of Oceanography
Volume 2012 (2012), Article ID 645178, 6 pages
http://dx.doi.org/10.1155/2012/645178
Research Article

Polycyclic Aromatic Hydrocarbons in Various Species of Fishes from Mumbai Harbour, India, and Their Dietary Intake Concentration to Human

1Division of Ecotoxicology, Sálim Ali Centre for Ornithology and Natural History, Coimbatore 641108, India
2Regional Occupational Health Center, ICMR, Kannamangala Post, Poojanahalli Road, Devenahalli TK, Bangalore 562110, India

Received 22 November 2011; Revised 30 January 2012; Accepted 8 February 2012

Academic Editor: Swadhin Behera

Copyright © 2012 V. Dhananjayan and S. Muralidharan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. E. Nacci, M. Kohan, M. Pelletier, and E. George, “Effects of benzo[a]pyrene exposure on a fish population resistant to the toxic effects of dioxin-like compounds,” Aquatic Toxicology, vol. 57, no. 4, pp. 203–215, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Armstrong, E. Hutchinson, J. Unwin, and T. Fletcher, “Lung cancer risk after exposure to polycyclic aromatic hydrocarbons: a review and meta-analysis,” Environmental Health Perspectives, vol. 112, no. 9, pp. 970–978, 2004. View at Google Scholar · View at Scopus
  3. E. R. Christensen and P. A. Bzdusek, “PAHs in sediments of the Black River and the Ashtabula River, Ohio: source apportionment by factor analysis,” Water Research, vol. 39, no. 4, pp. 511–524, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. H.-B. Moon, K. Kannan, S.-J. Lee, and G. Ok, “Atmospheric deposition of polycyclic aromatic hydrocarbons in an urban and a suburban area of Korea from 2002 to 2004,” Archives of Environmental Contamination and Toxicology, vol. 51, no. 4, pp. 494–502, 2006. View at Publisher · View at Google Scholar
  5. P. C. Van Metre, B. J. Mahler, and E. T. Furlong, “Urban sprawl leaves its PAH signature,” Environmental Science and Technology, vol. 34, no. 19, pp. 4064–4070, 2000. View at Publisher · View at Google Scholar
  6. G. Scherer, S. Frank, K. Riedel, I. Meger-Kossien, and T. Renner, “Biomonitoring of exposure to polycyclic aromatic hydrocarbons of nonoccupationally exposed persons,” Cancer Epidemiology Biomarkers and Prevention, vol. 9, no. 4, pp. 373–380, 2000. View at Google Scholar · View at Scopus
  7. G. Falcó, J. L. Domingo, J. M. Llobet, A. Teixidó, C. Casas, and L. Müller, “Polycyclic aromatic hydrocarbons in foods: human exposure through the diet in Catalonia, Spain,” Journal of Food Protection, vol. 66, no. 12, pp. 2325–2331, 2003. View at Google Scholar
  8. R. J. Law and J. Hellou, “Contamination of fish and shellfish following oil spill incidents,” Environmental Geosciences, vol. 6, no. 2, pp. 90–98, 1999. View at Google Scholar · View at Scopus
  9. I. Vives, J. O. Grimalt, P. Fernández, and B. Rosseland, “Polycyclic aromatic hydrocarbons in fish from remote and high mountain lakes in Europe and Greenland,” Science of the Total Environment, vol. 324, no. 1–3, pp. 67–77, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Johnson-Restrepo, J. Olivero-Verbel, S. Lu et al., “Polycyclic aromatic hydrocarbons and their hydroxylated metabolites in fish bile and sediments from coastal waters of Colombia,” Environmental Pollution, vol. 151, no. 3, pp. 452–459, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. H. M. Ismail, “The role of omega-3 fatty acids in cardiac protection: an overview,” Frontiers in Bioscience, vol. 10, pp. 1079–1088, 2005. View at Google Scholar
  12. J. L. Domingo, A. Bocio, G. Falcó, and J. M. Llobet, “Benefits and risks of fish consumption. Part I. A quantitative analysis of the intake of omega-3 fatty acids and chemical contaminants,” Toxicology, vol. 230, no. 2-3, pp. 219–226, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. I. Sioen, J. Van Camp, F. Verdonck et al., “Probabilistic intake assessment of multiple compounds as a tool to quantify the nutritional-toxicological conflict related to seafood consumption,” Chemosphere, vol. 71, no. 6, pp. 1056–1066, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. G. L. Ambrosini, L. Fritschi, N. H. de Klerk, D. Mackerras, and J. Leavy, “Dietary patterns identified using factor analysis and prostate cancer risk: a case control study in Western Australia,” Annals of Epidemiology, vol. 18, no. 5, pp. 364–370, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Shen, R. S. Chapman, X. He et al., “Dietary factors, food contamination and lung cancer risk in Xuanwei, China,” Lung Cancer, vol. 61, no. 3, pp. 275–282, 2008. View at Publisher · View at Google Scholar
  16. R. Martí-Cid, J. M. Llobet, V. Castell, and J. L. Domingo, “Evolution of the dietary exposure to polycyclic aromatic hydrocarbons in Catalonia, Spain,” Food and Chemical Toxicology, vol. 46, no. 9, pp. 3163–3171, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. S. P. Fondekar, R. S. Topgi, and R. J. Noronha, “Distribution of petroleum hydrocarbons in Goa coastal waters,” Indian Journal of Marine Sciences, vol. 9, no. 4, pp. 286–288, 1980. View at Google Scholar
  18. A. N. Kadam and V. P. Bhangale, “Petroleum hydrocarbons in northwest coastal waters of India,” Indian Journal of Marine Sciences, vol. 22, no. 3, pp. 227–228, 1993. View at Google Scholar
  19. M. S. Shailaja, R. Rajamanickam, and S. Wahidulla, “Increased formation of carcinogenic PAH metabolites in fish promoted by nitrite,” Environmental Pollution, vol. 143, no. 1, pp. 174–177, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Mehta, A. N. Kadam, S. N. Gajbhiye, and B. N. Desai, “Petroleum hydrocarbon concentration in selected species of fish and prawn form northwest coast of India,” Indian Journal of Marine Science, vol. 23, no. 2, pp. 123–125, 1994. View at Google Scholar
  21. P. C. Mohan and R. R. Prakash, “Concentration of petroleum hydrocarbons in bivalve Mytilopsis sallei and in the habour waters of Visakhapatnam, east coast of India,” Indian Journal of Marine Sciences, vol. 27, no. 3-4, pp. 496–498, 1998. View at Google Scholar · View at Scopus
  22. A. Malik, K. P. Singh, D. Mohan, and D. K. Patel, “Distribution of polycyclic aromatic hydrocarbons in Gomti river system, India,” Bulletin of Environmental Contamination and Toxicology, vol. 72, no. 6, pp. 1211–1218, 2004. View at Publisher · View at Google Scholar
  23. A. Malik, P. Ojha, and K. P. Singh, “Distribution of polycyclic aromatic hydrocarbons in edible fish from Gomti river, India,” Bulletin of Environmental Contamination and Toxicology, vol. 80, no. 2, pp. 134–138, 2008. View at Publisher · View at Google Scholar
  24. S. A. Ingole, S. S. Dhaktode, and A. N. Kadam, “Determination of petroleum hydrocarbons in sediment samples from Bombay harbour, Dharamtar creek and Amba river estuary,” Indian Journal of Environmental Protection, vol. 9, no. 2, pp. 118–123, 1989. View at Google Scholar · View at Scopus
  25. M. K. Chouksey, A. N. Kadam, and M. D. Zingde, “Petroleum hydrocarbon residues in the marine environment of Bassein-Mumbai,” Marine Pollution Bulletin, vol. 49, no. 7-8, pp. 637–647, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. U.S. EPA, “Volume I. Human Health Evaluation Manual (HHEM) (Part A, Baseline Risk Assessment). Interim Final,” Office of Emergency and Remedial Response, Washington, DC, USA, EPA/540/1-89/002. NTIS PB90-15558, 1989.
  27. M. D. Zingde, “Marine pollution—what are we heading for?” in Ocean Science: Trends and Future Directions, pp. 229–246, Indian National Science Academy, New Delhi, India, 1999. View at Google Scholar
  28. M. Z. Islam and A. R. Rahmani, Important Bird Areas in India: Priority Sites for Conservation, Indian Bird Conservation Network, Bombay Natural History Society and Bird life International, Oxford University Press, Oxford, UK, 2004.
  29. P. V. Dehadrai, “Aquaculture and environment,” in Souvenir, National Aquaculture Week, pp. 13–16, Aquaculture Foundation of India, Chennai, India, 1997. View at Google Scholar
  30. A. Kumari, R. K. Slnha, K. Gopal, and K. Prasad, “Dietary intake of persistent organochlorine residues through gangetic fishes in India,” International Journal of Ecology and Environmental Sciences, vol. 27, no. 2, pp. 117–120, 2001. View at Google Scholar · View at Scopus
  31. D. L. Villeneuve, J. S. Khim, K. Kannan, and J. P. Giesy, “Relative potencies of individual polycyclic aromatic hydrocarbons to induce dioxinlike and estrogenic responses in three cell lines,” Environmental Toxicology, vol. 17, no. 2, pp. 128–137, 2002. View at Publisher · View at Google Scholar
  32. Committee on Toxicity (CoT) of Chemicals in Food, Consumer Products, and the Environment, and Food standards Agency/Department of Health, Brussel, Belgium, 2001.
  33. K. L. Willett, P. R. Gardinali, J. L. Sericano, T. L. Wade, and S. H. Safe, “Characterization of the H4IIE rat hepatoma cell bioassay for evaluation of environmental samples containing polynuclear aromatic hydrocarbons (PAHs),” Archives of Environmental Contamination and Toxicology, vol. 32, no. 4, pp. 442–448, 1997. View at Publisher · View at Google Scholar
  34. K. Y. Kong, K. C. Cheung, C. K. C. Wong, and M. H. Wong, “The residual dynamic of polycyclic aromatic hydrocarbons and organochlorine pesticides in fishponds of the Pearl River delta, South China,” Water Research, vol. 39, no. 9, pp. 1831–1843, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Liang, M. F. Tse, L. Young, and M. H. Wong, “Distribution patterns of polycyclic aromatic hydrocarbons (PAHs) in the sediments and fish at Mai Po Marshes Nature Reserve, Hong Kong,” Water Research, vol. 41, no. 6, pp. 1303–1311, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. A. A. Z. DouAbul, H. M. A. Heba, and K. H. Fareed, “Polynuclear Aromatic Hydrocarbons (PAHs) in fish from the Red Sea Coast of Yemen,” Hydrobiologia, vol. 352, no. 1–3, pp. 251–262, 1997. View at Google Scholar · View at Scopus
  37. S. C. Deb, T. Araki, and T. Fukushima, “Polycyclic aromatic hydrocarbons in fish organs,” Marine Pollution Bulletin, vol. 40, no. 10, pp. 882–885, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. U. Varanasi, J. E. Stein, and M. Nishimoto, “Chemical carcinogenesis in feral fish: uptake, activation, and detoxication of organic xenobiotics,” Environmental Health Perspectives, vol. 71, pp. 155–170, 1987. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Falcó, A. Bocio, J. M. Llobet, and J. L. Domingo, “Health risks of dietary intake of environmental pollutants by elite sportsmen and sportswomen,” Food and Chemical Toxicology, vol. 43, no. 12, pp. 1713–1721, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Saeed, S. Al-Yakoob, H. Al-Hashash, and M. Al-Bahloul, “Preliminary exposure assessment for Kuwaiti consumers to polycyclic aromatic hydrocarbons in seafood,” Environment International, vol. 21, no. 3, pp. 255–263, 1995. View at Publisher · View at Google Scholar
  41. H.-B. Moon, H.-S. Kim, M. Choi, and H.-G. Choi, “Intake and potential health risk of polycyclic aromatic hydrocarbons associated with seafood consumption in Korea from 2005 to 2007,” Archives of Environmental Contamination and Toxicology, vol. 58, no. 1, pp. 214–221, 2010. View at Publisher · View at Google Scholar
  42. Scientific Committee on Food, “Opinion of the Scientific Committee on Food on the risk assessment of dioxins and dioxin-like PCBs in food,” CS/CNTM/DIOXIN/20 FINAL, Brussels, Belgium, 2001, http://ec.europa.eu/food/fs/sc/scf/out90_en.pdf.