Table of Contents
International Journal of Oceanography
Volume 2013, Article ID 567182, 13 pages
Research Article

C-Band Polarimetric Coherences and Ratios for Discriminating Sea Ice Roughness

Centre for Earth Observation Science, Department of Environment and Geography, Clayton H. Riddell Faculty of Environment, Earth, and Resources, University of Manitoba, Winnipeg, MB, Canada R3T 2N2

Received 10 December 2012; Revised 2 April 2013; Accepted 26 April 2013

Academic Editor: Grant Bigg

Copyright © 2013 Mukesh Gupta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The rapid decline of sea ice in the Arctic has resulted in a variable sea ice roughness that necessitates improved methods for efficient observation using high-resolution spaceborne radar. The utility of C-band polarimetric backscatter, coherences, and ratios as a discriminator of ice surface roughness is evaluated. An existing one-dimensional backscatter model has been modified to two-dimensions (2D) by considering deviation in the orientation (i.e., the slopes) in azimuth and range direction of surface roughness simultaneously as an improvement in the model. It is shown theoretically that the circular coherence () decreases exponentially with increasing surface roughness. The crosspolarized coherence () is found to be less sensitive to surface roughness, whereas the copolarized coherence () decreases at far-range incidence angles for all ice types. A complete validation of the adapted 2D model using direct measurements of surface roughness is suggested as an avenue for further research.