Table of Contents Author Guidelines Submit a Manuscript
International Journal of Otolaryngology
Volume 2011 (2011), Article ID 612690, 13 pages
http://dx.doi.org/10.1155/2011/612690
Research Article

Reduced Formation of Oxidative Stress Biomarkers and Migration of Mononuclear Phagocytes in the Cochleae of Chinchilla after Antioxidant Treatment in Acute Acoustic Trauma

1Hough Ear Institute, Oklahoma City, OK 73112, USA
2Audiology and Speech-Language Pathology, College of Medical Sciences, Catholic University of Daegu, Kyungsansi, Republic of Korea
3Spatial Orientation Center, Naval Medical Center, San Diego, CA, USA
4Experimental Therapeutics Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
5Department of Otolaryngology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 72104, USA

Received 28 April 2011; Accepted 19 July 2011

Academic Editor: Daniel Bodmer

Copyright © 2011 Xiaoping Du et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Ohinata, T. Yamasoba, J. Schacht, and J. M. Miller, “Glutathione limits noise-induced hearing loss,” Hearing Research, vol. 146, no. 1-2, pp. 28–34, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. K. K. Ohlemiller, J. S. Wright, and L. L. Dugan, “Early elevation of cochlear oxygen species following reactive noise exposure,” Audiology and Neuro-Otology, vol. 4, no. 5, pp. 229–236, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Yamane, Y. Nakai, M. Takayama, H. Iguchi, T. Nakagawa, and A. Kojima, “Appearance of free radicals in the guinea pig inner ear after noise-induced acoustic trauma,” European Archives of Oto-Rhino-Laryngology, vol. 252, no. 8, pp. 504–508, 1995. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Yamane, Y. Nakai, M. Takayama et al., “The emergence of free radicals after acoustic trauma and strial blood flow,” Acta Oto-Laryngologica, Supplement, no. 519, pp. 87–92, 1995. View at Google Scholar · View at Scopus
  5. Y. S. Chen, F. Y. Tseng, T. C. Liu, S. Y. Lin-Shiau, and C. J. Hsu, “Involvement of nitric oxide generation in noise-induced temporary threshold shift in guinea pigs,” Hearing Research, vol. 203, no. 1-2, pp. 94–100, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Karlidag, S. Yalçin, A. Oztürk et al., “The role of free oxygen radicals in noise induced hearing loss: effects of melatonin and methylprednisolone,” Auris Nasus Larynx, vol. 29, no. 2, pp. 147–152, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. Z. Liu, “Experimental study on the mechanism of free radical in blast trauma induced hearing loss,” Zhonghua er bi yan hou ke za zhi, vol. 27, no. 1, pp. 24–61, 1992. View at Google Scholar · View at Scopus
  8. D. Yamashita, H. Y. Jiang, J. Schacht, and J. M. Miller, “Delayed production of free radicals following noise exposure,” Brain Research, vol. 1019, no. 1-2, pp. 201–209, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. W. J. Clerici and L. Yang, “Direct effects of intraperilymphatic reactive oxygen species generation,” Hearing Research, vol. 101, no. 1-2, pp. 14–22, 1996. View at Publisher · View at Google Scholar · View at Scopus
  10. L. E. van Campen, W. J. Murphy, J. R. Franks, P. I. Mathias, and M. A. Toraason, “Oxidative DNA damage is associated with intense noise exposure in the rat,” Hearing Research, vol. 164, no. 1-2, pp. 29–38, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Dehne, J. Lautermann, W. J. F. ten Cate, U. Rauen, and H. de Groot, “In vitro effects of hydrogen peroxide on the cochlear neurosensory epithelium of the guinea pig,” Hearing Research, vol. 143, no. 1-2, pp. 162–170, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Pai, C. J. Zdanski, C. W. Gregory, J. Prazma, and V. Carrasco, “Sodium nitroprusside/nitric oxide causes apoptosis in spiral ganglion cells,” Otolaryngology—Head and Neck Surgery, vol. 119, no. 4, pp. 323–330, 1998. View at Publisher · View at Google Scholar
  13. M. Takayama, H. Yamane, K. Konishi et al., “Cleavage product NO donor NOC-5 and inner ear hair cell damage,” Acta Oto-Laryngologica, Supplement, no. 538, pp. 12–18, 1998. View at Google Scholar · View at Scopus
  14. H. Yamane, M. Takayama, K. Sunami et al., “Nitric oxide induces apoptosis of the hair cells of cochlea,” Acta Oto-Laryngologica, Supplement, vol. 124, no. 554, pp. 6–11, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Henderson, E. C. Bielefeld, K. C. Harris, and B. H. Hu, “The role of oxidative stress in noise-induced hearing loss,” Ear and Hearing, vol. 27, no. 1, pp. 1–19, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. N. Fischel-Ghodsian, R. D. Kopke, and X. Ge, “Mitochondrial dysfunction in hearing loss,” Mitochondrion, vol. 4, no. 5-6, pp. 675–694, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. B. H. Hu, D. Henderson, and T. M. Nicotera, “F-actin cleavage in apoptotic outer hair cells in chinchilla cochleas exposed to intense noise,” Hearing Research, vol. 172, no. 1-2, pp. 1–9, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. H. C. Lee and Y. H. Wei, “Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress,” International Journal of Biochemistry and Cell Biology, vol. 37, no. 4, pp. 822–834, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. C. G. Le Prell, D. Yamashita, S. B. Minami, T. Yamasoba, and J. M. Miller, “Mechanisms of noise-induced hearing loss indicate multiple methods of prevention,” Hearing Research, vol. 226, no. 1-2, pp. 22–43, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. E. C. Bielefeld, S. Hynes, D. Pryznosch, J. Liu, J. K. M. Coleman, and D. Henderson, “A comparison of the protective effects of systemic administration of a pro-glutathione drug and a Src-PTK inhibitor against noise-induced hearing loss,” Noise and Health, vol. 7, no. 29, pp. 24–30, 2005. View at Google Scholar · View at Scopus
  21. C. H. Choi, K. Chen, A. Vasquez-Weldon, R. L. Jackson, R. A. Floyd, and R. D. Kopke, “Effectiveness of 4-hydroxy phenyl N-tert-butylnitrone (4-OHPBN) alone and in combination with other antioxidant drugs in the treatment of acute acoustic trauma in chinchilla,” Free Radical Biology and Medicine, vol. 44, no. 9, pp. 1772–1784, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. A. R. Fetoni, A. Ferraresi, C. L. Greca et al., “Antioxidant protection against acoustic trauma by coadministration of idebenone and vitamin E,” NeuroReport, vol. 19, no. 3, pp. 277–281, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. B. H. Hu, X. Y. Zheng, S. L. McFadden, R. D. Kopke, and D. Henderson, “R-phenylisopropyladenosine attenuates noise-induced hearing loss in the chinchilla,” Hearing Research, vol. 113, no. 1-2, pp. 198–206, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. R. D. Kopke, P. A. Weisskopf, J. L. Boone et al., “Reduction of noise-induced hearing loss using L-NAC and salicylate in the chinchilla,” Hearing Research, vol. 149, no. 1-2, pp. 138–146, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. R. D. Kopke, E. Bielefeld, J. Liu et al., “Prevention of impulse noise-induced hearing loss with antioxidants,” Acta Oto-Laryngologica, vol. 125, no. 3, pp. 235–243, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. C. G. Le Prell, L. F. Hughes, and J. M. Miller, “Free radical scavengers vitamins A, C, and E plus magnesium reduce noise trauma,” Free Radical Biology and Medicine, vol. 42, no. 9, pp. 1454–1463, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Yamashita, H. Y. Jiang, C. G. Le Prell, J. Schacht, and J. M. Miller, “Post-exposure treatment attenuates noise-induced hearing loss,” Neuroscience, vol. 134, no. 2, pp. 633–642, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. R. D. Kopke, R. L. Jackson, J. K. M. Coleman, J. Liu, E. C. Bielefeld, and B. J. Balough, “NAC for noise: from the bench top to the clinic,” Hearing Research, vol. 226, no. 1-2, pp. 114–125, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. R. D. Kopke, J. K. M. Coleman, J. Liu, K. C. M. Campbell, and R. H. Riffenburgh, “Candidate's thesis: enhancing intrinsic cochlear stress defenses to reduce noise-induced hearing loss,” Laryngoscope, vol. 112, no. 9, pp. 1515–1532, 2002. View at Google Scholar · View at Scopus
  30. T. Yamasoba, A. L. Nuttall, C. Harris, Y. Raphael, and J. M. Miller, “Role of glutathione in protection against noise-induced hearing loss,” Brain Research, vol. 784, no. 1-2, pp. 82–90, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. R. A. Floyd, R. D. Kopke, C. H. Choi, S. B. Foster, S. Doblas, and R. A. Towner, “Nitrones as therapeutics,” Free Radical Biology and Medicine, vol. 45, no. 10, pp. 1361–1374, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. L. A. Reinke, D. R. Moore, H. Sang, E. G. Janzen, and Y. Kotake, “Aromatic hydroxylation in PBN spin trapping by hydroxyl radicals and cytochrome P-450,” Free Radical Biology and Medicine, vol. 28, no. 3, pp. 345–350, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. R. A. Floyd, “Protective action of nitrone-based free radical traps against oxidative damage to the central nervous system,” Advances in Pharmacology, vol. 38, pp. 361–378, 1997. View at Google Scholar · View at Scopus
  34. Y. Kotake, H. Sang, T. Miyajima, and G. L. Wallis, “Inhibition of NF-KappaB, iNOS mRNA, COX2 mRNA, and COX catalytic activity by phenyl-N-tert-butylnitrone (PBN),” Biochimica et Biophysica Acta—Molecular Cell Research, vol. 1448, no. 1, pp. 77–84, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. L. D. Fechter, S. F. L. Klis, N. A. Shirwany, T. G. Moore, and D. B. Rao, “Acrylonitrile produces transient cochlear function loss and potentiates permanent noise-induced hearing loss,” Toxicological Sciences, vol. 75, no. 1, pp. 117–123, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Rao and L. D. Fechter, “Protective effects of phenyl-N-tert-butylnitrone on the potentiation of noise-induced hearing loss by carbon monoxide,” Toxicology and Applied Pharmacology, vol. 167, no. 2, pp. 125–131, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Cassandro, L. Sequino, P. Mondola, G. Attanasio, M. Barbara, and R. Filipo, “Effect of superoxide dismutase and allopurinol on impulse noise-exposed guinea pigs - Electrophysiological and biochemical study,” Acta Oto-Laryngologica, vol. 123, no. 7, pp. 802–807, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. J. D. West and L. J. Marnett, “Alterations in gene expression induced by the lipid peroxidation product, 4-hydroxy-2-nonenal,” Chemical Research in Toxicology, vol. 18, no. 11, pp. 1642–1653, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Ohshima, M. Friesen, I. Brouet, and H. Bartsch, “Nitrotyrosine as a new marker for endogenous nitrosation and nitration of proteins,” Food and Chemical Toxicology, vol. 28, no. 9, pp. 647–652, 1990. View at Publisher · View at Google Scholar
  40. T. M. Nicotera, B. H. Hu, and D. Henderson, “The caspase pathway in noise-induced apoptosis of the chinchilla cochlea,” Journal of the Association for Research in Otolaryngology, vol. 4, no. 4, pp. 466–477, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Wang, J. Ruel, S. Ladrech, C. Bonny, T. R. van de Water, and J. L. Puel, “Inhibition of the c-Jun N-terminal kinase-mediated mitochondrial cell death pathway restores auditory function in sound-exposed animals,” Molecular Pharmacology, vol. 71, no. 3, pp. 654–666, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. X. Shi and A. L. Nuttall, “Upregulated iNOS and oxidative damage to the cochlear stria vascularis due to noise stress,” Brain Research, vol. 967, no. 1-2, pp. 1–10, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. K. I. Watanabe, S. Inai, A. Hess, O. Michel, and T. Yagi, “Acoustic stimulation promotes the expression of inducible nitric oxide synthase in the vestibule of guinea pigs,” Acta Oto-Laryngologica, Supplement, vol. 124, no. 553, pp. 54–57, 2004. View at Google Scholar · View at Scopus
  44. R. Gill, A. Tsung, and T. Billiar, “Linking oxidative stress to inflammation: toll-like receptors,” Free Radical Biology and Medicine, vol. 48, no. 9, pp. 1121–1132, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. L. Fredelius and H. Rask-Andersen, “The role of macrophages in the disposal of degeneration products within the organ of corti after acoustic overstimulation,” Acta Oto-Laryngologica, vol. 109, no. 1-2, pp. 76–82, 1990. View at Google Scholar · View at Scopus
  46. K. Hirose, C. M. Discolo, J. R. Keasler, and R. Ransohoff, “Mononuclear phagocytes migrate into the murine cochlea after acoustic trauma,” Journal of Comparative Neurology, vol. 489, no. 2, pp. 180–194, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. S. V. Tornabene, K. Sato, L. Pham, P. Billings, and E. M. Keithley, “Immune cell recruitment following acoustic trauma,” Hearing Research, vol. 222, no. 1-2, pp. 115–124, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. D. D. Greenwood, “A cochlear frequency-position function for several species–29 years later,” Journal of the Acoustical Society of America, vol. 87, no. 6, pp. 2592–2605, 1990. View at Publisher · View at Google Scholar · View at Scopus
  49. D. H. Eldredge, J. D. Miller, and B. A. Bohne, “A frequency-position map for the chinchilla cochlea,” Journal of the Acoustical Society of America, vol. 69, no. 4, pp. 1091–1095, 1981. View at Google Scholar · View at Scopus
  50. G. W. Harding, B. A. Bohne, and M. Ahmad, “DPOAE level shifts and ABR threshold shifts compared to detailed analysis of histopathological damage from noise,” Hearing Research, vol. 174, no. 1-2, pp. 158–171, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Zhu, X. Du, Q. Cai et al., “Impaired stria vascularis in the inner ear of apolipoprotein E gene knockout mice,” ORL Journal for Oto-Rhino-Laryngolology, Head and Neck Surgery, vol. 70, no. 6, pp. 373–380, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. C. V. Weaver, S. P. Liu, J. F. Lu, and B. S. Lin, “The effects of benzene exposure on apoptosis in epithelial lung cells: localization by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) and the immunocytochemical localization of apoptosis-related gene products,” Cell Biology and Toxicology, vol. 23, no. 3, pp. 201–220, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. B. A. Bohne, G. W. Harding, A. S. Nordmann, C. J. Tseng, G. E. Liang, and R. S. Bahadori, “Survival-fixation of the cochlea: a technique for following time- dependent degeneration and repair in noise-exposed chinchillas,” Hearing Research, vol. 134, no. 1-2, pp. 163–178, 1999. View at Publisher · View at Google Scholar · View at Scopus
  54. J. K. M. Coleman, R. D. Kopke, J. Liu et al., “Pharmacological rescue of noise induced hearing loss using N-acetylcysteine and acetyl-l-carnitine,” Hearing Research, vol. 226, no. 1-2, pp. 104–113, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. X. Shi and A. L. Nuttall, “Expression of adhesion molecular proteins in the cochlear lateral wall of normal and PARP-1 mutant mice,” Hearing Research, vol. 224, no. 1-2, pp. 1–14, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. K. Wakabayashi, M. Fujioka, S. Kanzaki et al., “Blockade of interleukin-6 signaling suppressed cochlear inflammatory response and improved hearing impairment in noise-damaged mice cochlea,” Neuroscience Research, vol. 66, no. 4, pp. 345–352, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. E. K. O'Halloran and E. C. Oesterle, “Characterization of leukocyte subtypes in chicken inner ear sensory epithelia,” Journal of Comparative Neurology, vol. 475, no. 3, pp. 340–360, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Miyao, G. S. Firestein, and E. M. Keithley, “Acoustic trauma augments the cochlear immune response to antigen,” Laryngoscope, vol. 118, no. 10, pp. 1801–1808, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. E. Sato, H. E. Shick, R. M. Ransohoff, and K. Hirose, “Expression of fractalkine receptor CX3CR1 on cochlear macrophages influences survival of hair cells following ototoxic injury,” Journal of the Association for Research in Otolaryngology, vol. 11, no. 2, pp. 223–234, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. Y. Wang, K. Hirose, and M. C. Liberman, “Dynamics of noise-induced cellular injury and repair in the mouse cochlea,” Journal of the Association for Research in Otolaryngology, vol. 3, no. 3, pp. 248–268, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. K. Hirose and M. C. Liberman, “Lateral wall histology and endocochlear potential in the noise-damaged mouse cochlea,” The Journal of Comparative Neurology, vol. 4, no. 3, pp. 339–352, 2003. View at Google Scholar
  62. R. H. Lee, D. Efron, U. Tantry, and A. Barbul, “Nitric oxide in the healing wound: a time-course study,” Journal of Surgical Research, vol. 101, no. 1, pp. 104–108, 2001. View at Publisher · View at Google Scholar · View at Scopus
  63. J. C. Adams, “Clinical implications of inflammatory cytokines in the cochlea: a technical note,” Otology and Neurotology, vol. 23, no. 3, pp. 316–322, 2002. View at Google Scholar · View at Scopus
  64. K. Yoshida, I. Ichimiya, M. Suzuki, and G. Mogi, “Effect of proinflammatory cytokines on cultured spiral ligament fibrocytes,” Hearing Research, vol. 137, no. 1-2, pp. 155–159, 1999. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Fujioka, S. Kanzaki, H. J. Okano, M. Masuda, K. Ogawa, and H. Okano, “Proinflammatory cytokines expression in noise-induced damaged cochlea,” Journal of Neuroscience Research, vol. 83, no. 4, pp. 575–583, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. L. Fredelius, H. Rask-Andersen, B. Johansson, R. Urquiza, D. Bagger-Sjoback, and J. Wersall, “Time sequence of degeneration pattern of the organ of corti after acoustic overstimulation. A light microscopical and electrophysiological investigation in the guinea pig,” Acta Oto-Laryngologica, vol. 106, no. 5-6, pp. 81–93, 1988. View at Google Scholar · View at Scopus
  67. D. Henderson, V. Spongr, M. Subramaniam, and P. Campo, “Anatomical effects of impact noise,” Hearing Research, vol. 76, no. 1-2, pp. 101–117, 1994. View at Publisher · View at Google Scholar · View at Scopus
  68. I. Kruman, A. J. Bruce-Keller, D. Bredesen, G. Waeg, and M. P. Mattson, “Evidence that 4-hydroxynonenal mediates oxidative stress-induced neuronal apoptosis,” Journal of Neuroscience, vol. 17, no. 13, pp. 5089–5100, 1997. View at Google Scholar · View at Scopus
  69. J. W. Ruiz, J. Guzman, M. Polak, A. A. Eshraghi, T. J. Balkany, and T. R. Van De Water, “Glutathione ester protects against hydroxynonenal-induced loss of auditory hair cells,” Otolaryngology—Head and Neck Surgery, vol. 135, no. 5, pp. 792–797, 2006. View at Publisher · View at Google Scholar
  70. S. G. Kujawa and M. C. Liberman, “Acceleration of age-related hearing loss by early noise exposure: evidence of a misspent youth,” Journal of Neuroscience, vol. 26, no. 7, pp. 2115–2123, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. I. Ichimiya, K. Yoshida, T. Hirano, M. Suzuki, and G. Mogi, “Significance of spiral ligament fibrocytes with cochlear inflammation,” International Journal of Pediatric Otorhinolaryngology, vol. 56, no. 1, pp. 45–51, 2000. View at Publisher · View at Google Scholar · View at Scopus
  72. Z. H. Jin, T. Kikuchi, K. Tanaka, and T. Kobayashi, “Expression of glutamate transporter GLAST in the developing mouse cochlea,” Tohoku Journal of Experimental Medicine, vol. 200, no. 3, pp. 137–144, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. A. P. Xia, T. Kikuchi, K. Hozawa, Y. Katori, and T. Takasaka, “Expression of connexin 26 and Na,K-ATPase in the developing mouse cochlear lateral wall: functional implications,” Brain Research, vol. 846, no. 1, pp. 106–111, 1999. View at Publisher · View at Google Scholar · View at Scopus
  74. S. Hequembourg and M. C. Liberman, “Spiral ligament pathology: a major aspect of age-related cochlear degeneration in C57BL/6 mice,” Journal of the Association for Research in Otolaryngology, vol. 2, no. 2, pp. 118–129, 2001. View at Google Scholar · View at Scopus
  75. S. H. Sha, R. Taylor, A. Forge, and J. Schacht, “Differential vulnerability of basal and apical hair cells is based on intrinsic susceptibility to free radicals,” Hearing Research, vol. 155, no. 1-2, pp. 1–8, 2001. View at Publisher · View at Google Scholar · View at Scopus
  76. K. Hensley, Q. N. Pye, M. L. Maidt et al., “Interaction of alpha-phenyl-N-tert-butyl nitrone and alterative electron acceptors with complex I indicates a substrate reduction site upstream from the rotenone binding site,” Journal of Neurochemistry, vol. 71, no. 6, pp. 2549–2557, 1998. View at Google Scholar