Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2009 (2009), Article ID 650509, 5 pages
http://dx.doi.org/10.1155/2009/650509
Research Article

Influence of MWCNTs Doping on the Structure and Properties of PEDOT:PSS Films

1College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
2School of Materials Science and Engineering, Shandong University of Technology, Zibo 255049, China

Received 26 March 2009; Revised 6 August 2009; Accepted 7 September 2009

Academic Editor: Mohamed Sabry Abdel-Mottaleb

Copyright © 2009 Jiao Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Heywang and F. Jonas, “Poly(alkylenedioxythiophene)s-new, very stable conducting polymers,” Advanced Materials, vol. 4, no. 2, pp. 116–118, 1992. View at Google Scholar · View at Scopus
  2. L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, “Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future,” Advanced Materials, vol. 12, no. 7, pp. 481–494, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. Y.-F. Zhou, Y.-B. Yuan, L.-F. Cao et al., “Improved stability of OLEDs with mild oxygen plasma treated PEDOT:PSS,” Journal of Luminescence, vol. 122-123, pp. 602–604, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. T.-C. Tsai, W.-Y. Hung, L.-C. Chi, K.-T. Wong, C.-C. Hsieh, and P.-T. Chou, “A new ambipolar blue emitter for NTSC standard blue organic light-emitting device,” Organic Electronics, vol. 10, no. 1, pp. 158–162, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Vacca, M. Petrosino, R. Miscioscia et al., “Poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) ratio: structural, physical and hole injection properties in organic light emitting diodes,” Thin Solid Films, vol. 516, no. 12, pp. 4232–4237, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. C.-J. Ko, Y.-K. Lin, F.-C. Chen, and C.-W. Chu, “Modified buffer layers for polymer photovoltaic devices,” Applied Physics Letters, vol. 90, no. 6, Article ID 063509, 3 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Bouclé, S. Chyla, M. S. P. Shaffer, J. R. Durrant, D. D. C. Bradley, and J. Nelson, “Hybrid solar cells from a blend of poly(3-hexylthiophene) and ligand-capped TiO2 nanorods,” Advanced Functional Materials, vol. 18, no. 4, pp. 622–633, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. K. X. Steirer, M. O. Reese, B. L. Rupert et al., “Ultrasonic spray deposition for production of organic solar cells,” Solar Energy Materials & Solar Cells, vol. 93, no. 4, pp. 447–453, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. S. K. M. Jönsson, J. Birgerson, X. Crispin et al., “The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT-PSS) films,” Synthetic Metals, vol. 139, no. 1, pp. 1–10, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Y. Kim, J. H. Jung, D. E. Lee, and J. Joo, “Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents,” Synthetic Metals, vol. 126, no. 2-3, pp. 311–316, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. C. C. Oey, A. B. Djurišic, C. Y. Kwong et al., “Nanocomposite hole injection layer for organic device applications,” Thin Solid Films, vol. 492, no. 1-2, pp. 253–258, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Huang, P. F. Miller, J. S. Wilson, A. J. de Mello, J. C. de Mello, and D. D. C. Bradley, “Investigation of the effects of doping and post-deposition treatments on the conductivity, morphology, and work function of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) films,” Advanced Functional Materials, vol. 15, no. 2, pp. 290–296, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Ouyang, Q. Xu, C.-W. Chu, Y. Yang, G. Li, and J. Shinar, “On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment,” Polymer, vol. 45, no. 25, pp. 8443–8450, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Ouyang, C.-W. Chu, F.-C. Chen, Q. Xu, and Y. Yang, “Polymer optoelectronic devices with high-conductivity poly(3,4-ethylenedioxythiophene) anodes,” Journal of Macromolecular Science Part A, vol. 41, no. 12, pp. 1497–1511, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Peng and X. Sun, “Highly aligned carbon nanotube/polymer composites with much improved electrical conductivities,” Chemical Physics Letters, vol. 471, no. 1–3, pp. 103–105, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. Z. Yang, H. Pu, J. Yuan, D. Wan, and Y. Liu, “Phthalocyanines-MWCNT hybrid materials: fabrication, aggregation and photoconductivity properties improvement,” Chemical Physics Letters, vol. 465, no. 1–3, pp. 73–77, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. M.-C. Wu, Y.-Y. Lin, S. Chen et al., “Enhancing light absorption and carrier transport of P3HT by doping multi-wall carbon nanotubes,” Chemical Physics Letters, vol. 468, no. 1–3, pp. 64–68, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. K. R. Reddy, B. C. Sin, K. S. Ryu, J.-C. Kim, H. Chung, and Y. Lee, “Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: synthesis, morphological characteristics and electrical properties,” Synthetic Metals, vol. 159, no. 7-8, pp. 595–603, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. T.-M. Wu, H.-L. Chang, and Y.-W. Lin, “Synthesis and characterization of conductive polypyrrole/multi-walled carbon nanotubes composites with improved solubility and conductivity,” Composites Science and Technology, vol. 69, no. 5, pp. 639–644, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Ma, S. R. Ali, A. S. Dodoo, and H. He, “Enhanced sensitivity for biosensors: multiple functions of DNA-wrapped single-walled carbon nanotubes in self-doped polyaniline nanocomposites,” Journal of Physical Chemistry B, vol. 110, no. 33, pp. 16359–16365, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, “Carbon nanotubes: the route toward applications,” Science, vol. 297, no. 5582, pp. 787–792, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. G.-F. Wang, X.-M. Tao, and R.-X. Wang, “Fabrication and characterization of OLEDs using PEDOT:PSS and MWCNT nanocomposites,” Composites Science and Technology, vol. 68, no. 14, pp. 2837–2841, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. R. A. Hatton, N. P. Blanchard, L. W. Tan, G. Latini, F. Cacialli, and S. R. P. Silva, “Oxidised carbon nanotubes as solution processable, high work function hole-extraction layers for organic solar cells,” Organic Electronics, vol. 10, no. 3, pp. 388–395, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Ghosh and O. Inganäs, “Self-assembly of a conducting polymer nanostructure by physical crosslinking: applications to conducting blends and modified electrodes,” Synthetic Metals, vol. 101, no. 1–3, pp. 413–416, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Jonas and G. Heywang, “Technical applications for conductive polymers,” Electrochimica Acta, vol. 39, no. 8-9, pp. 1345–1347, 1994. View at Google Scholar · View at Scopus
  26. L. Zhan, Z. Song, J. Zhang et al., “PEDOT: cathode active material with high specific capacity in novel electrolyte system,” Electrochimica Acta, vol. 53, no. 28, pp. 8319–8323, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Zhou, S. Wang, Q. Zhuang, and Z. Han, “Enhanced conductivity in polybenzoxazoles doped with carboxylated multi-walled carbon nanotubes,” Carbon, vol. 46, no. 9, pp. 1232–1240, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Łapkowski and A. Proń, “Electrochemical oxidation of poly(3,4-ethylenedioxythiophene)—“in situ” conductivity and spectroscopic investigations,” Synthetic Metals, vol. 110, no. 1, pp. 79–83, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. B.-H. Wang, Y.-H. Deng, J. Ge, X. Zhou, X.-G. Wang, and B.-Z. Yang, “Chemical synthesis of poly (3,4-ethylenedioxythiophene) in three different solvents,” Journal of Functional Materials, vol. 36, no. 10, pp. 1610–1612, 2005 (Chinese). View at Google Scholar · View at Scopus
  30. S. Garreau, G. Louarn, J. P. Buisson, G. Froyer, and S. Lefrant, “In situ spectroelectrochemical Raman studies of poly(3,4-ethylenedioxythiophene) (PEDT),” Macromolecules, vol. 32, no. 20, pp. 6807–6812, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. W. Jarernboon, S. Pimanpang, S. Maensiri, E. Swatsitang, and V. Amornkitbamrung, “Effects of multiwall carbon nanotubes in reducing microcrack formation on electrophoretically deposited TiO2 film,” Journal of Alloys and Compounds, vol. 476, no. 1-2, pp. 840–846, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Q. Tang, H. M. Wang, S. S. Jin et al., “Interaction between multi-walled carbon nanotubes and bromime and conducting mechanism,” Acta Chimica Sinica, vol. 66, no. 6, pp. 675–679, 2008. View at Google Scholar
  33. H.-X. Wu, R. Tong, X.-Q. Qiu et al., “Functionalization of multiwalled carbon nanotubes with polystyrene under atom transfer radical polymerization conditions,” Carbon, vol. 45, no. 1, pp. 152–159, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. B. R. Saunders and M. L. Turner, “Nanoparticle-polymer photovoltaic cells,” Advances in Colloid and Interface Science, vol. 138, no. 1, pp. 1–23, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. L. A. A. Pettersson, S. Ghosh, and O. Inganäs, “Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonate),” Organic Electronics, vol. 3, no. 3-4, pp. 143–148, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. J. K. W. Sandler, J. E. Kirk, I. A. Kinloch, M. S. P. Shaffer, and A. H. Windle, “Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites,” Polymer, vol. 44, no. 19, pp. 5893–5899, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Kumar, T. D. Dang, F. E. Arnold et al., “Synthesis, structure, and properties of PBO/SWNT composites,” Macromolecules, vol. 35, no. 24, pp. 9039–9043, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Zhang, M. Mine, D. Zhu, and M. Matsuo, “Electrical and dielectric behaviors and their origins in the three-dimensional polyvinyl alcohol/MWCNT composites with low percolation threshold,” Carbon, vol. 47, no. 5, pp. 1311–1320, 2009. View at Publisher · View at Google Scholar · View at Scopus