Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2012 (2012), Article ID 101968, 9 pages
http://dx.doi.org/10.1155/2012/101968
Research Article

Environmental Life-Cycle Analysis of Hybrid Solar Photovoltaic/Thermal Systems for Use in Hong Kong

1BEETRU, Division of Building Science and Technology, City University of Hong Kong, Kowloon, Hong Kong
2Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, China

Received 4 May 2012; Accepted 15 August 2012

Academic Editor: Christophe Menezo

Copyright © 2012 Tin-Tai Chow and Jie Ji. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Sandnes and J. Rekstad, “A photovoltaic/thermal (PV/T) collector with a polymer absorber plate. Experimental study and analytical model,” Solar Energy, vol. 72, no. 1, pp. 63–73, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Cristofari, G. Notton, P. Poggi, and A. Louche, “Modelling and performance of a copolymer solar water heating collector,” Solar Energy, vol. 72, no. 2, pp. 99–112, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Tripanagnostopoulos, T. Nousia, M. Souliotis, and P. Yianoulis, “Hybrid photovoltaic/thermal solar systems,” Solar Energy, vol. 72, no. 3, pp. 217–234, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. T. T. Chow, J. Ji, and W. He, “Photovoltaic-thermal collector system for domestic application,” Journal of Solar Energy Engineering, Transactions of the ASME, vol. 129, no. 2, pp. 205–209, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. T. T. Chow, W. He, A. L. S. Chan, K. F. Fong, Z. Lin, and J. Ji, “Computer modeling and experimental validation of a building-integrated photovoltaic and water heating system,” Applied Thermal Engineering, vol. 28, no. 11-12, pp. 1356–1364, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. T. T. Chow, W. He, J. Ji, and A. L. S. Chan, “Performance evaluation of photovoltaic-thermosyphon system for subtropical climate application,” Solar Energy, vol. 81, no. 1, pp. 123–130, 2007. View at Google Scholar · View at Scopus
  7. T. T. Chow, A. L. S. Chan, K. F. Fong, Z. Lin, W. He, and J. Ji, “Annual performance of building-integrated photovoltaic/water-heating system for warm climate application,” Applied Energy, vol. 86, no. 5, pp. 689–696, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. ISO, (International Organization for Standardization) 14040 Standard, Environmental Management-Life cycle Assessment- Principles and Framework, 1997.
  9. G. N. Tiwari and R. K. Mishra, Advanced Renewable Energy Sources, RSC Publishing, Cambridge, UK, 2012.
  10. E. Streicher, W. Heidemann, and H. Müller-Steinhagen, “Energy payback time—a key number for the assessment of thermal solar systems,” in Proceedings of EuroSun, pp. 20–23, Freiburg, Germany, June 2004.
  11. G. Tsilingiridis, G. Martinopoulos, and N. Kyriakis, “Life cycle environmental impact of a thermosyphonic domestic solar hot water system in comparison with electrical and gas water heating,” Renewable Energy, vol. 29, no. 8, pp. 1277–1288, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Ardente, G. Beccali, M. Cellura, and V. Lo Brano, “Life cycle assessment of a solar thermal collector,” Renewable Energy, vol. 30, no. 7, pp. 1031–1054, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Kalogirou, “Thermal performance, economic and environmental life cycle analysis of thermosiphon solar water heaters,” Solar Energy, vol. 83, no. 1, pp. 39–48, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. R. H. Crawford, G. J. Treloar, B. D. Ilozor, and P. E. D. Love, “Comparative greenhouse emissions analysis of domestic solar hot water systems,” Building Research and Information, vol. 31, no. 1, pp. 34–47, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Arif, “Life cycle analysis and carbon credit earned by solar water heating system,” International Journal of Research in Engineering and Applied Sciences, vol. 2, no. 2, pp. 1884–1905, 2012. View at Google Scholar
  16. Y. Hang, M. Qu, and F. Zhao, “Economic and environmental life cycle analysis of solar hot water systems in the United States,” Energy and Buildings, vol. 45, pp. 181–188, 2012. View at Google Scholar
  17. N. Jungbluth, “Life cycle assessment of crystalline photovoltaics in the Swiss ecoinvent database,” Progress in Photovoltaics: Research and Applications, vol. 13, no. 5, pp. 429–446, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. E. A. Alsema, “Energy pay-back time and CO2 emissions of PV systems,” Progress in Photovoltaics Research and Applications, vol. 8, pp. 17–25, 2000. View at Google Scholar
  19. E. A. Alsema, M. J. de Wild-Scholten, and V. M. Fthenakis, “Environmental impacts of PV electricity generation, a critical comparison of energy supply options,” in Proceedings of 21st European Photovoltaic Solar Energy Conference, Dresden, Germany, 2006.
  20. E. A. Alsema and M. J. de Wild-Scholten, “Reduction of the environmental impacts in crystalline silicon module manufacturing,” in Proceedings of the 22nd European Photovoltaic Solar Energy Conference, Milan, Italy, 2007.
  21. E. A. Alsema and E. Nieuwlaar, “Energy viability of photovoltaic systems,” Energy Policy, vol. 28, no. 14, pp. 999–1010, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. J. E. Mason, V. M. Fthenakis, T. Hansen, and H. C. Kim, “Energy payback and life-cycle CO2 emissions of the BOS in an optimized 3.5MW PV installation,” Progress in Photovoltaics: Research and Applications, vol. 14, no. 2, pp. 179–190, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. V. M. Fthenakis and H. C. Kim, “Greenhouse-gas emissions from solar electric- and nuclear power: a life-cycle study,” Energy Policy, vol. 35, no. 4, pp. 2549–2557, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Kannan, K. C. Leong, R. Osman, H. K. Ho, and C. P. Tso, “Life cycle assessment study of solar PV systems: an example of a 2.7 kWp distributed solar PV system in Singapore,” Solar Energy, vol. 80, no. 5, pp. 555–563, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. I. Nawaz and G. N. Tiwari, “Embodied energy analysis of photovoltaic (PV) system based on macro- and micro-level,” Energy Policy, vol. 34, no. 17, pp. 3144–3152, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Lu and H. X. Yang, “Environmental payback time analysis of a roof-mounted building-integrated photovoltaic (BIPV) system in Hong Kong,” Applied Energy, vol. 87, no. 12, pp. 3625–3631, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Bankier and S. Gale, “Energy payback of roof mounted photovoltaic cells,” The Environmental Engineer, vol. 7, no. 4, pp. 11–14, 2006. View at Google Scholar
  28. A. F. Sherwani, J. A. Usmani, and Varun, “Life cycle assessment of solar PV based electricity generation systems: a review,” Renewable and Sustainable Energy Reviews, vol. 14, no. 1, pp. 540–544, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Battisti and A. Corrado, “Evaluation of technical improvements of photovoltaic systems through life cycle assessment methodology,” Energy, vol. 30, no. 7, pp. 952–967, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Tripanagnostopoulos, M. Souliotis, R. Battisti, and A. Corrado, “Energy, cost and LCA results of PV and hybrid PV/T solar systems,” Progress in Photovoltaics: Research and Applications, vol. 13, no. 3, pp. 235–250, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Dubey and G. N. Tiwari, “Life cycle cost analysis and carbon credit earned by PV/T solar water heater for Delhi climatic conditions,” Open Environmental Sciences, vol. 2, pp. 15–25, 2008. View at Google Scholar
  32. Hong Kong Government, Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) Tool for Commercial Building Developments in Hong Kong: User Manual, EMSD, Hong Kong SAR Government publication, 2005.
  33. “Hong Kong Government,” Guidelines to Account for and Report on Greenhouse Gas Emission and Removals for Buildings (Commercial, Residential or Institutional Purposes) in Hong Kong, EMSD and EPD, Hong Kong SAR Government publication, 2008.
  34. M. Ito, K. Kato, K. Komoto, T. Kichimi, and K. Kurokawa, “A comparative study on cost and life-cycle analysis for 100 MW very large-scale PV (VLS-PV) systems in deserts using m-Si, a-Si, CdTe, and CIS modules,” Progress in Photovoltaics: Research and Applications, vol. 16, no. 1, pp. 17–30, 2008. View at Publisher · View at Google Scholar · View at Scopus