Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2012, Article ID 261045, 10 pages
http://dx.doi.org/10.1155/2012/261045
Research Article

Performance of Ag-TiO2 Photocatalysts towards the Photocatalytic Disinfection of Water under Interior-Lighting and Solar-Simulated Light Irradiations

Centro de Investigaciones en Catálisis (CICAT), Universidad Industrial de Santander, Cra. 27 Calle 9, A.A. 678 Bucaramanga, Colombia

Received 14 July 2011; Accepted 19 August 2011

Academic Editor: Jiaguo Yu

Copyright © 2012 Camilo A. Castro et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. Byrne, P. A. Fernandez-Ibañez, P. S.M. Dunlop, D. M.A. Alrousan, and J. W.J. Hamilton, “Photocatalytic enhancement for solar disinfection of water: a review,” International Journal of Photoenergy, vol. 2011, Article ID 798051, 12 pages, 2011. View at Publisher · View at Google Scholar
  2. S.-J. Kim, N.-H. Lee, H.-J. Oh, S.-C. Jung, W.-J. Lee, and D.-H. Kim, “Photocatalytic properties of nanotubular-shaped TiO2 powders with anatase phase obtained from titanate nanotube powder through various thermal treatments,” International Journal of Photoenergy, vol. 2011, Article ID 327821, 7 pages, 2011. View at Publisher · View at Google Scholar
  3. C. Wang and J. Yao, “Decolorization of methylene blue with TiO2 sol via UV irradiation photocatalytic degradation,” International Journal of Photoenergy, vol. 2010, Article ID 643182, 6 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. C. A. Castro, A. Centeno, and S. A. Giraldo, “Iron promotion of the TiO2 photosensitization process towards the photocatalytic oxidation of azo dyes under solar-simulated light irradiation,” Materials Chemistry and Physics, vol. 129, no. 3, pp. 1176–1183, 2011. View at Publisher · View at Google Scholar
  5. A. J. Frank, N. Kopidakis, and J. V. D. Lagemaat, “Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties,” Coordination Chemistry Reviews, vol. 248, no. 13-14, pp. 1165–1179, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. C. A. Castro-López, A. Centeno, and S. A. Giraldo, “Fe-modified TiO2 photocatalysts for the oxidative degradation of recalcitrant water contaminants,” Catalysis Today, vol. 157, no. 1-4, pp. 119–124, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Gamage and Z. Zhang, “Applications of photocatalytic disinfection,” International Journal of Photoenergy, vol. 2010, Article ID 764870, 11 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. A. G. Rincón, C. Pulgarin, N. Adler, and P. Peringer, “Interaction between E. coli inactivation and DBP-precursors-dihydroxybenzene isomers in the photocatalytic process of drinking-water disinfection with TiO2,” Journal of Photochemistry and Photobiology A, vol. 139, no. 2-3, pp. 233–241, 2001. View at Google Scholar · View at Scopus
  9. M. K. Seery, R. George, P. Floris, and S. C. Pillai, “Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis,” Journal of Photochemistry and Photobiology A, vol. 189, no. 2-3, pp. 258–263, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Awazu, M. Fujimaki, C. Rockstuhl et al., “A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide,” Journal of the American Chemical Society, vol. 130, no. 5, pp. 1676–1680, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. B. Xin, L. Jing, Z. Ren, B. Wang, and H. Fu, “Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2,” Journal of Physical Chemistry B, vol. 109, no. 7, pp. 2805–2809, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. O. Akhavan and E. Ghaderi, “Self-accumulated Ag nanoparticles on mesoporous TiO2 thin film with high bactericidal activities,” Surface and Coatings Technology, vol. 204, no. 21-22, pp. 3676–3683, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. Z. Xiong, J. Ma, W. J. Ng, T. D. Waite, and X. S. Zhao, “Silver-modified mesoporous TiO2 photocatalyst for water purification,” Water Research, vol. 45, no. 5, pp. 2095–2103, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. W. Zhou, H. Liu, J. Wang, D. Liu, G. Du, and J. Cui, “Ag2O/TiO2 nanobelts heterostructure with enhanced ultraviolet and visible photocatalytic activity,” ACS Applied Materials & Interfaces, vol. 2, no. 8, pp. 2385–2392, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. D. R. Monteiro, L. F. Gorup, A. S. Takamiya, A. C. Ruvollo-Filho, E. R. D. Camargo, and D. B. Barbosa, “The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver,” International Journal of Antimicrobial Agents, vol. 34, no. 2, pp. 103–110, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. Y. Lai, Y. Chen, H. Zhuang, and C. Lin, “A facile method for synthesis of Ag/TiO2 nanostructures,” Materials Letters, vol. 62, no. 21-22, pp. 3688–3690, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Miao, Y. Ina, S. Tanemura et al., “Fabrication and photochromic study of titanate nanotubes loaded with silver nanoparticles,” Surface Science, vol. 601, no. 13, pp. 2792–2799, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Zielińska, E. Kowalska, J. W. Sobczak et al., “Silver-doped TiO2 prepared by microemulsion method: surface properties, bio- and photoactivity,” Separation and Purification Technology, vol. 72, no. 3, pp. 309–318, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Liu, C. Y. Liu, Q. H. Rong, and Z. Zhang, “Characteristics of the silver-doped TiO2 nanoparticles,” Applied Surface Science, vol. 220, no. 1–4, pp. 7–11, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Yu, J. Xiong, B. Cheng, and S. Liu, “Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity,” Applied Catalysis B, vol. 60, no. 3-4, pp. 211–221, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Oliveri, G. Ramis, G. Busca, and V. S. Escribano, “Thermal stability of vanadia-titania catalysts,” Journal of Materials Chemistry, vol. 3, no. 12, pp. 1239–1249, 1993. View at Google Scholar · View at Scopus
  22. M. Kusakabe, Y. Ito, M. Arai, Y. Shirakawa, and S. Tamaki, “Ionic conductivity in silver-dissolved α-CuI,” Solid State Ionics, vol. 92, no. 1-2, pp. 135–138, 1996. View at Google Scholar · View at Scopus
  23. J. Maier, Physical Chemistry of Ionic Materials: Ions and Electrons in Solids, Wiley, London, UK, 2004.
  24. M. C. Biesinger, L. W. M. Lau, A. R. Gerson, and R. S. C. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn,” Applied Surface Science, vol. 257, no. 3, pp. 887–898, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Stylidi, D. I. Kondarides, and X. E. Verykios, “Visible light-induced photocatalytic degradation of Acid Orange 7 in aqueous TiO2 suspensions,” Applied Catalysis B, vol. 47, no. 3, pp. 189–201, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. E. Nesmelov and D. D. Thomas, “Multibore sample cell increases EPR sensitivity for aqueous samples,” Journal of Magnetic Resonance, vol. 178, no. 2, pp. 318–324, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. Q. Chang, H. He, and Z. Ma, “Efficient disinfection of Escherichia coli in water by silver loaded alumina,” Journal of Inorganic Biochemistry, vol. 102, no. 9, pp. 1736–1742, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. H. Gerischer and A. Heller, “The role of oxygen in photooxidation of organic molecules on semiconductor particles,” Journal of Physical Chemistry, vol. 95, no. 13, pp. 5261–5267, 1991. View at Google Scholar · View at Scopus
  29. Y. Tian and T. Tatsuma, “Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2,” Chemical Communications, vol. 10, no. 16, pp. 1810–1811, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. M. Richter, A. Abramova, U. Bentrup, and R. Fricke, “Proof of reversible Ag+/Ag0 redox transformation on mesoporous alumina by in situ UV-Vis spectroscopy,” Journal of Applied Spectroscopy, vol. 71, no. 3, pp. 400–403, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. G. A. Ozin, F. Hugues, S. M. Mattar, and D. F. McIntos, “Low nuclearity silver clusters in fajausite-type zeolites: optical spectroscopy, photochemistry, and relationship to the photodimerization of alkanes,” Journal of Physical Chemistry, vol. 87, no. 18, pp. 3445–3450, 1983. View at Google Scholar
  32. B. Cheng, Y. Le, and J. Yu, “Preparation and enhanced photocatalytic activity of Ag@TiO2 core-shell nanocomposite nanowires,” Journal of Hazardous Materials, vol. 177, no. 1–3, pp. 971–977, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. Q. Xiang, J. Yu, B. Cheng, and H. C. Ong, “Microwave-hydrothermal preparation and visible-light photoactivity of plasmonic photocatalyst Ag-TiO2 nanocomposite hollow spheres,” Chemistry—An Asian Journal, vol. 5, no. 6, pp. 1466–1474, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. Z. Zheng, B. Huang, X. Qin, X. Zhang, Y. Dai, and M. -H. Whangbo, “Facile in situ synthesis of visible-light plasmonic photocatalysts M@TiO2 (M = Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol,” Journal of Materials Chemistry, vol. 21, no. 25, pp. 9079–9087, 2011. View at Publisher · View at Google Scholar
  35. P. Wang, B. Huang, X. Qin et al., “Ag@AgCl: a highly efficient and stable photocatalyst active under visible light,” Angewandte Chemie, vol. 47, no. 41, pp. 7931–7933, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. B. Baruwati and R. S. Varma, “Synthesis of N-doped nano TiO2 using guanidine nitrate: an excellent visible light photocatalyst,” Journal of Nanoscience and Nanotechnology, vol. 11, no. 3, pp. 2036–2041, 2011. View at Publisher · View at Google Scholar
  37. R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science, vol. 294, no. 5548, pp. 1901–1903, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. X. Wang, S. Li, H. Yu, and J. Yu, “In situ anion-exchange synthesis and photocatalytic activity of Ag 8W4O16/AgCl-nanoparticle core-shell nanorods,” Journal of Molecular Catalysis A, vol. 334, no. 1-2, pp. 52–59, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. W. Zhao, L. Feng, R. Yang, J. Zheng, and X. Li, “Synthesis, characterization, and photocatalytic properties of Ag modified hollow SiO2/TiO2 hybrid microspheres,” Applied Catalysis B, vol. 103, no. 1-2, pp. 181–189, 2011. View at Publisher · View at Google Scholar
  40. F. B. Li, X. Z. Li, C. H. Ao, S. C. Lee, and M. F. Hou, “Enhanced photocatalytic degradation of VOCs using Ln3+-TiO2 catalysts for indoor air purification,” Chemosphere, vol. 59, no. 6, pp. 787–800, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. O. Akhavan, “Lasting antibacterial activities of Ag-TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation,” Journal of Colloid and Interface Science, vol. 336, no. 1, pp. 117–124, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. M. Romand, M. Roubin, and J. P. Deloume, “ESCA studies of some copper and silver selenides,” Journal of Electron Spectroscopy and Related Phenomena, vol. 13, no. 3, pp. 229–242, 1978. View at Google Scholar · View at Scopus
  43. B. Xin, Z. Ren, H. Hu et al., “Photocatalytic activity and interfacial carrier transfer of Ag-TiO2 nanoparticle films,” Applied Surface Science, vol. 252, no. 5, pp. 2050–2055, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. Z. Y. Huang, G. Mills, and B. Hajek, “Spontaneous formation of silver particles in basic 2-propanol,” Journal of Physical Chemistry, vol. 97, no. 44, pp. 11542–11550, 1993. View at Google Scholar · View at Scopus
  45. V. K. Kaushik, “XPS core level spectra and Auger parameters for some silver compounds,” Journal of Electron Spectroscopy and Related Phenomena, vol. 56, no. 3, pp. 273–277, 1991. View at Google Scholar · View at Scopus
  46. F. Werfel and O. Brümmer, “Corundum structure oxides studied by XPS,” Physica Scripta, vol. 28, no. 1, pp. 92–96, 1983. View at Google Scholar
  47. A. Romanyuk and P. Oelhafen, “Formation and electronic structure of TiO2-Ag interface,” Solar Energy Materials and Solar Cells, vol. 91, no. 12, pp. 1051–1054, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. N. Sakai, R. Wang, A. Fujishima, T. Watanabe, and K. Hashimoto, “Effect of ultrasonic treatment on highly hydrophilic TiO2 surfaces,” Langmuir, vol. 14, no. 20, pp. 5918–5920, 1998. View at Google Scholar · View at Scopus
  49. R. Konaka, E. Kasahara, W. C. Dunlap, Y. Yamamoto, K. C. Chien, and M. Inoue, “Irradiation of titanium dioxide generates both singlet oxygen and superoxide anion,” Free Radical Biology and Medicine, vol. 27, no. 3-4, pp. 294–300, 1999. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Kaur and V. Singh, “Visible light induced sonophotocatalytic degradation of Reactive Red dye 198 using dye sensitized TiO2,” Ultrasonics Sonochemistry, vol. 14, no. 5, pp. 531–537, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. T. A. Dahl, “Direct exposure of mammalian cells to pure exogenous singlet oxygen (ΔgO2),” Photochemistry and Photobiology, vol. 57, no. 2, pp. 248–254, 1993. View at Google Scholar · View at Scopus
  52. Z. Cheng and Y. Li, “What is responsible for the initiating chemistry of iron-mediated lipid peroxidation: an update,” Chemical Reviews, vol. 107, no. 3, pp. 748–766, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. A. G. Rincón and C. Pulgarin, “Bactericidal action of illuminated TiO2 on pure Escherichia coli and natural bacterial consortia: post-irradiation events in the dark and assessment of the effective disinfection time,” Applied Catalysis B, vol. 49, no. 2, pp. 99–112, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Marugán, R. van Grieken, C. Sordo, and C. Cruz, “Kinetics of the photocatalytic disinfection of Escherichia coli suspensions,” Applied Catalysis B, vol. 82, no. 1-2, pp. 27–36, 2008. View at Publisher · View at Google Scholar · View at Scopus