Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2012, Article ID 269654, 10 pages
Review Article

Nitrogen Incorporation in TiO2: Does It Make a Visible Light Photo-Active Material?

National Centre for Catalysis Research, Indian Institute of Technology Madras, Chennai 600 036, India

Received 18 January 2012; Revised 11 April 2012; Accepted 26 April 2012

Academic Editor: Xuxu Wang

Copyright © 2012 B. Viswanathan and K. R. Krishanmurthy. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The possibility of hydrogen production by photo-catalytic decomposition of water on titania has provided the incentive for intense research. Titania is the preferred semiconductor for this process, in spite of its large band gap (~3.2 eV) that restricts its utility only in the UV region. Various sensitization methodologies have been adopted to make titania to be active in the visible region. Doping of TiO2 with nitrogen is one such method. The purpose of this presentation is to examine the state and location of nitrogen introduced in TiO2 lattice and how far the shift of optical response to visible radiation can be beneficial for the observed photo-catalysis. The specific aspects that are discussed in this article are: (i) N-doped titania surface adopts a non-native configuration, though the bulk material is still in the native configuration of pure TiO2 (ii) Though the nitrogen doped materials showed optical response in the visible region, the changes/improvements in photo-catalytic activity are only marginal in most of the cases. (iii) The exact chemical nature/state of the introduced nitrogen, and its location in titania lattice, substitutional and/or interstitial, is still unclear (iv) Is there a limit to the incorporation of nitrogen in the lattice of TiO2?