Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2012, Article ID 312168, 6 pages
http://dx.doi.org/10.1155/2012/312168
Research Article

The Experimental Performance of an Unglazed PVT Collector with Two Different Absorber Types

1Green Home Energy Technology Research Center, Kongju National University, 275 Budae-Dong, Cheonan, Chungnam 330-717, Republic of Korea
2Department of Architectural Engineering, Kongju National University, 275 Budae-Dong, Cheonan, Chungnam 330-717, Republic of Korea

Received 6 April 2012; Revised 12 June 2012; Accepted 28 June 2012

Academic Editor: Tin-Tai Chow

Copyright © 2012 Jin-Hee Kim and Jun-Tae Kim. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. H. Kim and J. T. Kim, “An experimental study of a water type glazed PV/thermal combined collector module,” Journal of Korean Air-Conditioning and Refrigeration, vol. 20, no. 4, pp. 260–265, 2008. View at Google Scholar
  2. J. H. Kim, J. T. Kim et al., “The comparison of the electrical and thermal performance of glazed and unglazed PVT collectors,” in The Proceedings of the 8th EuroSun Conference, Graz, Austria, August 2010.
  3. J. H. Kim, J. G. Kang, and J. T. Kim, “Experimental performance comparison of water type glazed and unglazed PV-thermal combined collectors,” Journal of Korean Institute of Ecological Architecture and Environment, vol. 9, no. 4, pp. 37–42, 2009. View at Google Scholar
  4. T. Bergene and O. M. Løvvik, “Model calculations on a flat-plate solar heat collector with integrated solar cells,” Solar Energy, vol. 55, no. 6, pp. 453–462, 1995. View at Google Scholar · View at Scopus
  5. K. Sopian, K. S. Yigit, H. T. Liu, S. Kakaç, and T. N. Veziroglu, “Performance analysis of photovoltaic thermal air heaters,” Energy Conversion and Management, vol. 37, no. 11, pp. 1657–1670, 1996. View at Publisher · View at Google Scholar · View at Scopus
  6. T. T. Chow, “Performance analysis of photovoltaic-thermal collector by explicit dynamic model,” Solar Energy, vol. 75, no. 2, pp. 143–152, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. H. A. Zondag, D. W. de Vries, W. G. J. van Helden, R. J. C. van Zolingen, and A. A. van Steenhoven, “The yield of different combined PV-thermal collector designs,” Solar Energy, vol. 74, no. 3, pp. 253–269, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Sandnes and J. Rekstad, “A photovoltaic/thermal (PV/T) collector with a polymer absorber plate. Experimental study and analytical model,” Solar Energy, vol. 72, no. 1, pp. 63–73, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. H. P. Garg, R. K. Agarwal, and J. C. Joshi, “Experimental study on a hybrid photovoltaic-thermal solar water heater and its performance predictions,” Energy Conversion and Management, vol. 35, no. 7, pp. 621–633, 1994. View at Google Scholar · View at Scopus
  10. T. T. Chow, A. L. S. Chan, K. F. Fong, W. C. Lo, and C. L. Song, “Energy performance of a solar hybrid collector system in a multistory apartment building,” Proceedings of the Institution of Mechanical Engineers A, vol. 219, no. 1, pp. 1–11, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. T. T. Chow, W. He, J. Ji, and A. L. S. Chan, “Performance evaluation of photovoltaic-thermosyphon system for subtropical climate application,” Solar Energy, vol. 81, no. 1, pp. 123–130, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. T. T. Chow, W. He, and J. Ji, “Hybrid photovoltaic-thermosyphon water heating system for residential application,” Solar Energy, vol. 80, no. 3, pp. 298–306, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. T. T. Chow, J. Ji, and W. He, “Photovoltaic-thermal collector system for domestic application,” Solar Energy Engineering, vol. 129, no. 2, pp. 205–209, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Ji, J. P. Lu, T. T. Chow, W. He, and G. Pei, “A sensitivity study of a hybrid photovoltaic/thermal water-heating system with natural circulation,” Applied Energy, vol. 84, no. 2, pp. 222–237, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Ibrahim, M. Y. Othman, M. H. Ruslan et al., “Performance of photovoltaic thermal collector (PVT) with different absorbers design,” WSEAS Transactions on Environment and Development, vol. 5, no. 3, pp. 321–330, 2009. View at Google Scholar · View at Scopus
  16. B. J. Huang, T. H. Lin, W. C. Hung, and F. S. Sun, “Performance evaluation of solar photovoltaic/thermal systems,” Solar Energy, vol. 70, no. 5, pp. 443–448, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Affolter, W. Eisenmann, H. Fechner et al., PVT Roadmap: An European Guide For the Development And Market Introduction of PV-Thermal Technology, ECN, 2006.
  18. American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE), Standard 93–2010—Methods of Testing To Determine the Thermal Performance of Solar Collectors, ASHRAE Inc, Atlanta, Ga, USA, 1991.
  19. H. Zondag, N. Van der Borg, and W. Eisenmann, D8-6: PVT Performance Measurement Guidelines: Guidelines For Performance Measurements of Liquid-Cooled Non-ConCentrating PVT Collectors Using C-Si Cells, ECN & ISFH: Emmerthal, Petten, Netherlands, 2005.