Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2012, Article ID 325902, 7 pages
http://dx.doi.org/10.1155/2012/325902
Research Article

Anatase TiO2 Nanospindle/Activated Carbon (AC) Composite Photocatalysts with Enhanced Activity in Removal of Organic Contaminant

Institute of Biomaterials, South China Agricultural University, Guangzhou 510642, China

Received 23 July 2011; Revised 17 October 2011; Accepted 1 November 2011

Academic Editor: Jiaguo Yu

Copyright © 2012 Wuyi Zhou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. A. Fox and M. T. Dulay, “Heterogeneous photocatalysis,” Chemical Reviews, vol. 93, no. 1, pp. 341–357, 1993. View at Google Scholar · View at Scopus
  2. M. Inagaki, Y. Nakazawa, M. Hirano, Y. Kobayashi, and M. Toyoda, “Preparation of stable anatase-type TiO2 and its photocatalytic performance,” International Journal of Inorganic Materials, vol. 3, no. 7, pp. 809–811, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. M. R. Hoffmann, S. T. Martin, and W. Choi, “Environmental applications of semiconductor photocatalysis,” Chemical Reviews, vol. 95, no. 1, pp. 69–96, 1995. View at Google Scholar · View at Scopus
  4. Q. J. Xiang, J. G. Yu, and M. Jaroniec, “Enhanced photocatalytic H2-production activity of grapheme-modified titania nanosheets,” Nanoscale, no. 3, pp. 3670–3678, 2011. View at Google Scholar
  5. J. A. Byrne, P. A. Fernandez-Ibañez, P. Dunlop, D. Alrousan, and J. Hamilton, “Photocatalytic enhancement for solar disinfection of water: a review,” International Journal of Photoenergy, vol. 2011, article 798051, pp. 1–12, 2011. View at Publisher · View at Google Scholar
  6. W. Y. Zhou, S. Q. Tang, L. Wan, K. Wei, and D. Y. Li, “Preparation of nano-TiO2 photocatalyst by hydrolyzation-precipitation method with metatitanic acid as the precursor,” Journal of Materials Science, vol. 39, no. 3, pp. 1139–1141, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. S. O. Baumann, M. J. Elser, M. Auer, J. Bernardi, N. Hüsing, and O. Diwald, “Solid-solid interface formation in TiO2 nanoparticle networks,” Langmuir, vol. 27, no. 5, pp. 1946–1953, 2011. View at Publisher · View at Google Scholar
  8. J. Jitputti, Y. Suzuki, and S. Yoshikawa, “Synthesis of TiO2 nanowires and their photocatalytic activity for hydrogen evolution,” Catalysis Communications, vol. 9, no. 6, pp. 1265–1271, 1995. View at Google Scholar
  9. J.-S. Lee, Y.-I. Lee, H. Song, D.-H. Jang, and Y.-H. Choa, “Synthesis and characterization of TiO2 nanowires with controlled porosity and microstructure using electrospinning method,” Current Applied Physics, vol. 11, no. 1, pp. S210–S214, 2011. View at Publisher · View at Google Scholar
  10. X. Feng, J. Zhai, and L. Jiang, “The fabrication and switchable superhydrophobicity of TiO2 nanorod films,” Angewandte ChemieI, vol. 117, no. 32, pp. 5245–5248, 2005. View at Google Scholar
  11. Y. Wang, G. Du, H. Liu et al., “A photocatalytic reduction method for the preparation of TiO2 nanobelt supported noble metals (Ag, Au),” Journal of Nanoscience and Nanotechnology, vol. 9, no. 3, pp. 2119–2123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Zhao, J. R. Ran, Z. Shu, G. T. Dai, P. C. Zhai, and S. M. Wang, “Effects of calcination temperatures on photocatalytic activity of ordered titanate nanoribbon/SnO2 films fabricated during an EPD process,” International Journal of Photoenergy, vol. 2012, pp. 1–7, 2012. View at Publisher · View at Google Scholar
  13. S. M. Liu, L. M. Gan, L. H. Liu, W. D. Zhang, and H. C. Zeng, “Synthesis of single-crystalline TiO2 nanotubes,” Chemistry of Materials, vol. 14, no. 3, pp. 1391–1397, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. N. H. Lee, H. J. Oh, S. C. Jung et al., “Photocatalytic properties of nanotubular-shaped TiO2 powders with anatase phase obtained fromtitanate nanotube powder through various thermal treatments,” International Journal of Photoenergy, vol. 2011, pp. 1–7, 2011. View at Google Scholar
  15. X. B. Chen and S. S. Mao, “Titanium dioxide nanomaterials: synthesis, properties, modifications and applications,” Chemical Reviews, vol. 107, no. 7, pp. 2891–2959, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. R. H. Chu, J. C. Yan, S. Y. Lian, Y. H. Wang, F. C. Yan, and D. W. Chen, “Shape-controlled synthesis of nanocrystalline titania at low temperature,” Solid State Communications, vol. 130, no. 12, pp. 789–792, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. C. Qiu, W. Chen, and S. H. Yang, “Double-layered photoanodes from variable-size anatase TiO2 nanospindles: a candidate for high-efficiency dye-sensitized solar cells,” Angewandte Chemie, vol. 122, no. 21, pp. 3757–3761, 2010. View at Google Scholar
  18. Y. C. Qiu, K. Y. Yan, S. H. Yang, L. M. Jin, H. Deng, and W. S. Li, “Synthesis of size-tunable anatase TiO2 nanospindles and their assembly into anatase@titanium oxynitride/titanium nitride_graphene nanocomposites for rechargeable lithium ion batteries with high cycling performance,” ACS Nano, vol. 4, no. 11, pp. 6515–6526, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. S. W. Lee and W. M. Sigmund, “Formation of anatase TiO2 nanoparticles on carbon nanotubes,” Chemical Communications, vol. 9, no. 6, pp. 780–781, 2003. View at Google Scholar · View at Scopus
  20. J. G. Yu, T. T. Ma, and S. W. Liu, “Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel,” Physical Chemistry Chemical Physics, vol. 13, no. 8, pp. 3491–3501, 2011. View at Publisher · View at Google Scholar
  21. Y. X. Chen, W. M. Liu, C. F. Ye, L. G. Yu, and S. K. Qi, “Preparation and characterization of self-assembled alkanephosphate monolayers on glass substrate coated with nano-TiO2 thin film,” Materials Research Bulletin, vol. 36, no. 15, pp. 2605–2612, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Yazawa, F. Machida, K. Oki, A. Mineshige, and M. Kobune, “Novel porous TiO2 glass-ceramics with highly photocatalytic ability,” Ceramics International, vol. 35, no. 4, pp. 1693–1697, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. S. X. Liu, X. Y. Chen, and X. Chen, “A TiO2/AC composite photocatalyst with high activity and easy separation prepared by a hydrothermal method,” Journal of Hazardous Materials, vol. 143, no. 1-2, pp. 257–263, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. T.-T. Lim, P.-S. Yap, M. Srinivasan, and A. Fane, “TiO2/AC composites for synergistic adsorption-photocatalysis processes: present challenges and further developments for water treatment and reclamation,” Critical Reviews in Environmental Science and Technology, vol. 41, no. 13, pp. 1173–1230, 2011. View at Publisher · View at Google Scholar
  25. H. Slimen, A. Houas, and J. P. Nogier, “Elaboration of stable anatase TiO2 through activated carbon addition with high photocatalytic activity under visible light,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 221, no. 10, pp. 13–21, 2011. View at Publisher · View at Google Scholar
  26. S. M. Lam, J. C. Sin, and A. R. Mohamed, “Parameter effect on photocatalytic degradation of phenol using TiO2-P25/activated carbon (AC),” Korean Journal of Chemical Engineering, vol. 27, no. 4, pp. 1109–1116, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. J. C. Sin, S. M. Lam, and A. R. Mohamed, “Optimizing photocatalytic degradation of phenol by TiO2/GAC using response surface methodology,” Korean Journal of Chemical Engineering, vol. 28, no. 1, pp. 84–92, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Cordero, C. Duchamp, J. M. Chovelon, C. Ferronato, and J. Matos, “Influence of L-type activated carbons on photocatalytic activity of TiO2 in 4-chlorophenol photodegradation,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 191, no. 2-3, pp. 122–131, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Matos, J. Laine, J. M. Herrmann et al., “Influence of activated carbon upon titania on aqueous photocatalytic consecutive runs of phenol photomineralization,” Applied Catalysis B: Environmental, vol. 70, no. 1–4, pp. 461–469, 2007. View at Google Scholar
  30. M. Hirano and K. Date, “Scandium-doped anatase (TiO2) nanoparticles directly formed by hydrothermal crystallization,” Journal of the American Ceramic Society, vol. 88, no. 9, pp. 2604–2607, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. C. H. Ao and S. C. Lee, “Enhancement effect of TiO2 immobilized on activated carbon filter for the photodegradation of pollutants at typical indoor air level,” Applied Catalysis B: Environmental, vol. 44, no. 3, pp. 191–205, 2003. View at Publisher · View at Google Scholar · View at Scopus