Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2012, Article ID 329796, 10 pages
http://dx.doi.org/10.1155/2012/329796
Research Article

The Synthesis of Anatase Nanoparticles and the Preparation of Photocatalytically Active Coatings Based on Wet Chemical Methods for Self-Cleaning Applications

1Cinkarna Celje, d.d., Kidriceva 26, 3001 Celje, Slovenia
2Laboratory for Environmental Research, University of Nova Gorica, Vipavska 13, 5001 Nova Gorica, Slovenia
3Department for Nanostructured Materials, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia

Received 27 January 2012; Revised 28 March 2012; Accepted 28 March 2012

Academic Editor: Stéphane Jobic

Copyright © 2012 Dejan Verhovšek et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Winkler, Titanium Dioxide, Vincentz, Hanover, Germany, 2003.
  2. B. O'Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, no. 6346, pp. 737–740, 1991. View at Google Scholar · View at Scopus
  3. A. Jaroenworaluck, W. Sunsaneeyametha, N. Kosachan, and R. Stevens, “Characteristics of silica-coated TiO2 and its UV absorption for sunscreen cosmetic applications,” Surface and Interface Analysis, vol. 38, no. 4, pp. 473–477, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, vol. 238, no. 5358, pp. 37–38, 1972. View at Publisher · View at Google Scholar · View at Scopus
  5. S. U. M. Khan, M. Al-Shahry, and W. B. Ingler, “Efficient photochemical water splitting by a chemically modified n-TiO2,” Science, vol. 297, no. 5590, pp. 2243–2245, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Schiavello, Photocatalysis and Environment: Trends and Applications, Kluwer Academic, Dodrecht, The Netherlands, 1988.
  7. N. Serpone and E. Pelizetti, Photocatalysis: Fundamentals and Applications, Wiley, New York, NY, USA, 1989.
  8. D. F. Ollis and H. Al-Ekabi, Photocatalytic Purification and Treatment of Water and Air, Elsevier, Amsterdam, The Netherlands, 1993.
  9. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chemical Reviews, vol. 95, no. 1, pp. 69–96, 1995. View at Google Scholar · View at Scopus
  10. J. M. Herrmann, “Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants,” Catalysis Today, vol. 53, no. 1, pp. 115–129, 1999. View at Google Scholar · View at Scopus
  11. D. Bahnemann, “Photocatalytic detoxification of polluted waters,” in Environmental Photochemistry, Springer, Berlin, Germany, 1999. View at Google Scholar
  12. A. Fujishima, K. Hashimoto, and T. Watanabe, TiO2 Photocatalysis: Fundamentals and Applications, BKC, Tokyo, Japan, 1999.
  13. P. Pichat, J. Disdier, C. Hoang-Van, D. Mas, G. Goutailler, and C. Gaysse, “Purification/deodorization of indoor air and gaseous effluents by TiO2 photocatalysis,” Catalysis Today, vol. 63, no. 2–4, pp. 363–369, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Muneer, S. Das, V. B. Manilal, and A. Haridas, “Photocatalytic degradation of waste-water pollutants: titanium dioxide-mediated oxidation of methyl vinyl ketone,” Journal of Photochemistry and Photobiology A, vol. 63, no. 1, pp. 107–114, 1992. View at Google Scholar · View at Scopus
  15. S. G. Botta, D. J. Rodríguez, A. G. Leyva, and M. I. Litter, “Features of the transformation of HgII by heterogeneous photocatalysis over TiO2,” Catalysis Today, vol. 76, no. 2–4, pp. 247–258, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. S. C. Moon, Y. Matsumura, M. Kitano, M. Matsuoka, and M. Anpo, “Hydrogen production using semiconducting oxide photocatalysts,” Research on Chemical Intermediates, vol. 29, no. 3, pp. 233–256, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. J. H. Carey, J. Lawrence, and H. M. Tosine, “Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions,” Bulletin of Environmental Contamination and Toxicology, vol. 16, no. 6, pp. 697–701, 1976. View at Google Scholar · View at Scopus
  18. S. Sathyamoorthy, G. D. Moggridge, and M. J. Hounslow, “Controlling particle size during anatase precipitation,” AIChE Journal, vol. 47, no. 9, pp. 2012–2024, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Sathyamoorthy, G. D. Moggridge, and M. J. Hounslow, “Particle formation during anatase precipitation of seeded titanyl sulfate solution,” Crystal Growth and Design, vol. 1, no. 2, pp. 123–129, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. U. Černigoj and U. L. Štangar, “Preparation of TiO2/SiO2 and use thereof for deposition of self-cleaning anti-fogging,” International patent application number PCT/SI2009/000052. International patent publication number WO 2010/053459 A1; 2009.
  21. U. Černigoj, M. Kete, and U. L. Štangar, “Development of a fluorescence-based method for evaluation of self-cleaning properties of photocatalytic layers,” Catalysis Today, vol. 151, no. 1-2, pp. 46–52, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. U. Černigoj, M. Kete, U. L. Štangar, and V. Ducman, “Testing of photocatalytic activity of self-cleaning surfaces,” Advances in Science and Technology, vol. 68, pp. 126–134, 2010. View at Google Scholar
  23. Y. Li, Y. Fan, and Y. Chen, “A novel method for preparation of nanocrystalline rutile TiO2 powders by liquid hydrolysis of TiCl4,” Journal of Materials Chemistry, vol. 12, no. 5, pp. 1387–1390, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. J. W. Mullin, Cystallization, Butterworth-Heinemann, London, UK, 3rd edition, 1993.
  25. G. D. Parfitt, “Surface chemistry of oxides,” Pure and Applied Chemistry, vol. 48, pp. 415–418, 1976. View at Google Scholar
  26. G. D. Parfitt, J. Ramsbotham, and C. H. Rochester, “An electrophoretic investigation of the effect of chloride and of silanol groups on the properties of the surface of rutile,” Journal of Colloid And Interface Science, vol. 41, no. 3, pp. 437–444, 1972. View at Google Scholar · View at Scopus
  27. T. W. Evans, A. F. Sarofim, and G. Margolis, “Models of secondary nucleation attributable to crystal-crystallizer and crystal-crystal collisions,” AIChE Journal, vol. 20, no. 5, pp. 959–966, 1974. View at Google Scholar · View at Scopus
  28. E. G. Denk and G. D. Botsaris, “Mechanism of contact nucleation,” Journal of Crystal Growth, vol. 15, no. 1, pp. 57–60, 1972. View at Google Scholar · View at Scopus
  29. R. Y. Qian and G. D. Botsaris, “A new mechanism for nuclei formation in suspension crystallizers: the role of interparticle forces,” Chemical Engineering Science, vol. 52, no. 20, pp. 3429–3440, 1997. View at Publisher · View at Google Scholar · View at Scopus