Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2012 (2012), Article ID 367072, 8 pages
http://dx.doi.org/10.1155/2012/367072
Research Article

The Photocatalytic Inactivation Effect of Fe-Doped TiO2 Nanocomposites on Leukemic HL60 Cells-Based Photodynamic Therapy

1Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
2Department of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
3School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275, China

Received 7 October 2011; Revised 6 December 2011; Accepted 6 December 2011

Academic Editor: Jiaguo Yu

Copyright © 2012 Kangqiang Huang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The Fe-doped TiO2 nanocomposites synthesized by a deposition-precipitation method were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), and UV-vis adsorption spectra and then were taken as a new “photosensitizer” for photodynamic therapy (PDT). The photocatalytic inactivation of Fe-doped TiO2 on Leukemic HL60 cells was investigated using PDT reaction chamber based on LED light source, and the viability of HL60 cells was examined by Cell Counting Kit-8 (CCK-8) assay. The experimental results showed that the growth of leukemic HL60 cells was significantly inhibited by adding TiO2 nanoparticles, and the inactivation efficiency could be effectively enhanced by the surface modification of TiO2 nanoparticles with Fe doping. Furthermore, the optimized conditions were achieved at 5 wt% Fe/TiO2 at a final concentration of 200 μg/mL, in which up to 82.5% PDT efficiency for the HL60 cells can be obtained under the irradiation of 403 nm light (the power density is 5 mW/cm2) within 60 minutes.