Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2012, Article ID 368750, 10 pages
http://dx.doi.org/10.1155/2012/368750
Research Article

Synthesis, Characterization, and Photocatalysis of Fe-Doped : A Combined Experimental and Theoretical Study

1State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan City, Hubei Province 430070, China
2Photocatalyst Group, Kanagawa Academy of Science and Technology, KSP East 412, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
3Division of Photocatalyst for Energy and Environment, Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Received 6 January 2012; Revised 25 February 2012; Accepted 27 February 2012

Academic Editor: Baibiao Huang

Copyright © 2012 Liping Wen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, vol. 238, no. 5358, pp. 37–38, 1972. View at Publisher · View at Google Scholar · View at Scopus
  2. U. I. Gaya and A. H. Abdullah, “Heterogeneousphotocatalyticdegradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems,” Journal of Photochemistry and Photobiology C, vol. 9, no. 1, pp. 1–12, 2008. View at Publisher · View at Google Scholar
  3. J. R. Jennings, A. Ghicov, L. M. Peter, P. Schmuki, and A. B. Walker, “Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons,” Journal of the American Chemical Society, vol. 130, no. 40, pp. 13364–13372, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Kuang, J. Brillet, P. Chen et al., “Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells,” ACS Nano, vol. 2, no. 6, pp. 1113–1116, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chemical Reviews, vol. 95, no. 1, pp. 69–96, 1995. View at Google Scholar · View at Scopus
  6. C. Kormann, D. W. Bahnemann, and M. R. Hoffmann, “Photolysis of chloroform and other organic molecules in aqueous TiO2 suspensions,” Environmental Science and Technology, vol. 25, no. 3, pp. 494–500, 1991. View at Google Scholar · View at Scopus
  7. S. Sakthivel, M. Janczarek, and H. Kisch, “Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2,” Journal of Physical Chemistry B, vol. 108, no. 50, pp. 19384–19387, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Chen, Z. Jiang, J. Geng, Q. Wang, and D. Yang, “Carbon and nitrogen co-doped TiO2 with enhanced visible-light photocatalytic activity,” Industrial and Engineering Chemistry Research, vol. 46, no. 9, pp. 2741–2746, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. S. In, A. Orlov, R. Berg et al., “Effective visible light-activated B-doped and B,N-codoped TiO2 photocatalysts,” Journal of the American Chemical Society, vol. 129, no. 45, pp. 13790–13791, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Tojo, T. Tachikawa, M. Fujitsuka, and T. Majima, “Iodine-doped TiO2 photocatalysts: Correlation between band structure and mechanism,” Journal of Physical Chemistry C, vol. 112, no. 38, pp. 14948–14954, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Ozaki, S. Iwamoto, and M. Inoue, “Effects of amount of Si addition and annealing treatment on the photocatalytic activities of N- and Si-codoped titanias under visible-light irradiation,” Industrial and Engineering Chemistry Research, vol. 47, no. 7, pp. 2287–2293, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Lu, X. Quan, J. Li, S. Chen, H. Yu, and G. Chen, “Fabrication of boron-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability,” Journal of Physical Chemistry C, vol. 111, no. 32, pp. 11836–11842, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Hirakawa and Y. Nosaka, “Selective production of superoxide ions and hydrogen peroxide over nitrogen- and sulfur-doped TiO2 photocatalysts with visible light in aqueous suspension systems,” Journal of Physical Chemistry C, vol. 112, no. 40, pp. 15818–15823, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science, vol. 293, no. 5528, pp. 269–271, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. P. E. Lippens, A. V. Chadwick, A. Weibel, R. Bouchet, and P. Knauth, “Structure and chemical bonding in Zr-doped anatase TiO2 nanocrystals,” Journal of Physical Chemistry C, vol. 112, no. 1, pp. 43–47, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Yu and H. Yu, “Preparation, characterization and photocatalytic activity of in situ Fe-doped TiO2 thin films,” Thin Solid Film, vol. 496, no. 2, pp. 273–280, 2006. View at Google Scholar
  17. M. Zhou, J. Yu, and B. Cheng, “Effects of Fe-doping on the photocatalytic activity of mesoporous TiO2 powders prepared by an ultrasonic method,” Journal of Hazardous Materials, vol. 137, no. 3, pp. 1838–1847, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Mattsson, M. Leideborg, K. Larsson, G. Westing, and L. Österlund, “Adsorption and solar light decomposition of acetone on anatase TiO2 and niobium doped TiO2 thin films,” Journal of Physical Chemistry B, vol. 110, no. 3, pp. 1210–1220, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Yu, Q. Xiang, and M. Zhou, “Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures,” Applied Catalysis B, vol. 90, no. 3-4, pp. 595–602, 2009. View at Google Scholar
  20. W. Choi, A. Termin, and M. R. Hoffmann, “The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics,” Journal of Physical Chemistry, vol. 98, no. 51, pp. 13669–13679, 1994. View at Google Scholar · View at Scopus
  21. J. Zhu, F. Chen, J. Zhang, H. Chen, and M. Anpo, “Fe3+-TiO2 photocatalysts prepared by combining sol-gel method with hydrothermal treatment and their characterization,” Journal of Photochemistry and Photobiology A, vol. 180, no. 1-2, pp. 196–204, 2006. View at Google Scholar
  22. T. Tong, J. Zhang, B. Tian, F. Chen, and D. He, “Preparation of Fe3+-doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation,” Journal of Hazardous Materials, vol. 155, no. 3, pp. 572–579, 2008. View at Google Scholar
  23. J. Wang, Z. Liu, and R. Cai, “A new role for Fe3+ in TiO2 hydrosol: accelerated photodegradation of dyes under visible light,” Environmental Science and Technology, vol. 42, no. 15, pp. 5759–5764, 2008. View at Google Scholar
  24. H. Yu, H. Irie, and K. Hashimoto, “Conduction band energy level control of titanium dioxide: toward an efficient visible-light-sensitive photocatalyst,” Journal of the American Chemical Society, vol. 132, no. 20, pp. 6898–6899, 2010. View at Publisher · View at Google Scholar
  25. H. Irie, S. Miura, K. Kamiya, and K. Hashimoto, “Efficient visible light-sensitive photocatalysts: grafting Cu(II) ions onto TiO2 and WO3 photocatalysts,” Chemical Physics Letters, vol. 457, no. 1–3, pp. 202–205, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. Z. Zhang, C. C. Wang, R. Zakaria, and J. Y. Ying, “Role of particle size in nanocrystalline TiO2-based photocatalysts,” Journal of Physical Chemistry B, vol. 102, no. 52, pp. 10871–10878, 1998. View at Google Scholar · View at Scopus
  27. http://www.quantum-espresso.org/.
  28. S. Ardizzone, C. L. Bianchi, G. Cappelletti, S. Gialanella, C. Pirola, and V. Ragaini, “Tailored anatase/brookite nanocrystalline TiO2. The optimal particle features for liquidand gas-phase photocatalytic reactions,” Journal of Physical Chemistry C, vol. 111, no. 35, pp. 13222–13231, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Testino, I. R. Bellobono, V. Buscaglia et al., “Optimizing the photocatalytic properties of hydrothermal TiO2 by the control of phase composition and particle morphology. A systematic approach,” Journal of the American Chemical Society, vol. 129, no. 12, pp. 3564–3575, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. J. G. Yu, M. H. Zhou, B. Cheng, and X. J. Zhao, “Preparation, characterization and photocatalytic activity of in situ N,S-codoped TiO2 powders,” Journal of Molecular Catalysis A, vol. 246, no. 1-2, pp. 176–184, 2006. View at Google Scholar
  31. B. Liu, X. Zhao, Q. Zhao, C. Li, and X. He, “The effect of O2 partial pressure on the structure and photocatalytic property of TiO2 films prepared by sputtering,” Materials Chemistry and Physics, vol. 90, no. 1, pp. 207–212, 2005. View at Google Scholar
  32. Y. Lv, Y. Ding, J. Zhou, W. Xiao, and Y. Feng, “Preparation, characterization, and photocatalytic activity of N, S-codoped TiO2 nanoparticles,” Journal of the American Ceramic Society, vol. 92, no. 4, pp. 938–941, 2009. View at Publisher · View at Google Scholar
  33. B. Liu, L. Wen, and X. Zhao, “The surface change of TiO2 film induced by UV illumination and the effects on UV-vis transmission spectra,” Applied Surface Science, vol. 255, no. 5, pp. 2752–2758, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Choi, M. G. Antoniou, M. Pelaez, A. A. De La Cruz, J. A. Shoemaker, and D. D. Dionysiou, “Mesoporous nitrogen-doped TiO2 for the photocatalytic destruction of the cyanobacterial toxin microcystin-LR under visible light irradiation,” Environmental Science and Technology, vol. 41, no. 21, pp. 7530–7535, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. Z. Ambrus, N. Balázs, T. Alapi et al., “Synthesis, structure and photocatalytic properties of Fe(III)-doped TiO2 prepared from TiCl3,” Applied Catalysis B: Environmental, vol. 81, no. 1-2, pp. 27–37, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. B. Liu, X. Wang, G. Cai, L. Wen, Y. Song, and X. Zhao, “Low temperature fabrication of V-doped TiO2 nanoparticles, structure and photocatalytic studies,” Journal of Hazardous Materials, vol. 169, no. 1–3, pp. 1112–1118, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. K. S. W. Sing, D. H. Everett, R. A. W. Haul et al., “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity,” Pure and Applied Chemistry, vol. 57, no. 4, pp. 603–619, 1984. View at Google Scholar
  38. B. Liu, L. Wen, and X. Zhao, “The photoluminescence spectroscopic study of anatase TiO2 prepared by magnetron sputtering,” Materials Chemistry and Physics, vol. 106, no. 2-3, pp. 350–353, 2007. View at Google Scholar
  39. B. Liu, X. Zhao, and L. Wen, “The structural and photoluminescence studies related to the surface of the TiO2 sol prepared by wet chemical method,” Materials Science and Engineering B, vol. 134, no. 1, pp. 27–31, 206. View at Publisher · View at Google Scholar
  40. Y. Cong, J. Zhang, F. Chen, M. Anpo, and D. He, “Preparation, photocatalytic activity, and mechanism of nano-TiO2 Co-doped with nitrogen and iron (III),” Journal of Physical Chemistry C, vol. 111, no. 28, pp. 10618–10623, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Tang, K. Prasad, R. Sanjinès, P. E. Schmid, and F. Lévy, “Electrical and optical properties of TiO2 anatase thin films,” Journal of Applied Physics, vol. 75, no. 4, pp. 2042–2047, 1994. View at Publisher · View at Google Scholar · View at Scopus
  42. T. L. Villarreal, R. Gómez, M. González, and P. Salvador, “A kinetic model for distinguishing between direct and indirect interfacial hole transfer in the heterogeneous photooxidation of dissolved organics on TiO2 nanoparticle suspensions,” Journal of Physical Chemistry B, vol. 108, no. 52, pp. 20278–20290, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Yang, Y. Dai, and B. Huang, “First-principles calculations for geometrical structures and electronic properties of Si-doped TiO2,” Chemical Physics Letters, vol. 456, no. 1–3, pp. 71–75, 2008. View at Publisher · View at Google Scholar
  44. A. Roldán, M. Boronat, A. Corma, and F. Illas, “Theoretical confirmation of the enhanced facility to increase oxygen vacancy concentration in TiO2 by iron doping,” Journal of Physical Chemistry C, vol. 114, no. 14, pp. 6511–6517, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. I. Justicia, P. Ordejon, G. Canto et al., “Designed self-doped titanium oxide thin films for efficient visible-light photocatalysis,” Advanced Materials, vol. 14, no. 19, pp. 1399–1402, 2002. View at Google Scholar
  46. F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt, and P. Feng, “Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light,” Journal of the American Chemical Society, vol. 132, no. 34, pp. 11856–11857, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Grätzel, Heterogeneous Photochemical Electron Transfer Reactions, CRC Press, Boca Raton, Fla, USA, 1987.
  48. B. Liu, K. Nakata, X. Zhao, T. Ochiai, T. Murakami, and A. Fujishima, “Theoretical kinetic analysis of heterogeneous photocatalysis: the effects of surface trapping and bulk recombination through defects,” The Journal of Physics and Chemistry, vol. 115, no. 32, pp. 16037–16042, 2011. View at Google Scholar