Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2012 (2012), Article ID 401393, 6 pages
http://dx.doi.org/10.1155/2012/401393
Research Article

Alumina and Hafnia ALD Layers for a Niobium-Doped Titanium Oxide Photoanode

1Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
2Physics Department, Al-Azhar University-Gaza, P.O. Box 1277, Gaza, Palestine

Received 13 November 2012; Accepted 18 December 2012

Academic Editor: Sudhakar Shet

Copyright © 2012 Naji Al Dahoudi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. D. McConnell, “Assessment of the dye-sensitized solar cell,” Renewable and Sustainable Energy Reviews, vol. 6, no. 3, pp. 273–295, 2002. View at Google Scholar · View at Scopus
  2. B. O'Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, no. 6346, pp. 737–740, 1991. View at Google Scholar
  3. Y. Chiba, A. Islam, Y. Atanabe, R. Komiya, N. Koide, and L.Y. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%,” Japanese Journal of Applied Physics, vol. 45, supplement 2, pp. L638–L640, 2006. View at Google Scholar
  4. A. Yella, H.-W. Lee, H. N. Tsao et al., “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science, vol. 334, no. 6056, pp. 629–634, 2011. View at Publisher · View at Google Scholar
  5. Q. Zhang and G. Cao, “Nanostructured photoelectrodes for dye-sensitized solar cells,” Nano Today, vol. 6, no. 1, pp. 91–109, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. A. G. Aberla, T. Lauinger, and R. Hezel, “Remote PECVD silicon- a key technology for the crystalline silicon PV industry of the 21st century?” in Proceedings of the 14th European Photovoltaic Solar Energy Conference, pp. 684–689, H. S. Stephens & Associates, 1997.
  7. T. Saga, “Advances in crystalline silicon solar cell technology for industrial mass production,” NPG Asia Materials, vol. 2, pp. 96–102, 2010. View at Google Scholar
  8. B. Lim, S. Hermann, K. Bothe, J. Schmidt, and R. Brendel, “Permanent deactivation of the boron-oxygen recombination center in silicon solar cells,” in Proceedings of the 23rd European Photovoltaic Solar Energy Conference, p. 1018, 2008.
  9. U. Diebold, “The surface science of titanium dioxide,” Surface Science Reports, vol. 48, no. 5–8, pp. 53–229, 2003. View at Google Scholar · View at Scopus
  10. J.-J. Lee, M. Rahman, S. Sarker et al., Metal Oxides and Their Composites for the Photoelectrode of Dye Sensitized Solar Cells, Advances in Composite Materials for Medicine and Nanotechnology, InTech, 2011.
  11. K. H. Ko, Y. C. Lee, and Y. J. Jung, “Enhanced efficiency of dye-sensitized TiO2 solar cells (DSSC) by doping of metal ions,” Journal of Colloid and Interface Science, vol. 283, no. 2, pp. 482–487, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. X. Lü, X. Mou, J. Wu et al., “Improved-Performance Dye-Sensitized solar cells using Nb-Doped TiO2 electrodes: efficient electron Injection and transfer,” Advanced Functional Materials, vol. 20, no. 3, pp. 509–515, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. S. M. George, “Atomic layer deposition: an overview,” Chemical Reviews, vol. 110, no. 1, pp. 111–131, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Lin, F.-Y. Tsai, M.-H. Lee, C.-H. Lee, T.-C. Tien, and L.-P. Wang, “Enhanced performance of dye-sensitized solar cells by an Al2O3 charge-recombination barrier formed by low-temperature atomic layer deposition,” Journal of Materials Chemistry, vol. 19, no. 19, pp. 2999–3003, 2009. View at Publisher · View at Google Scholar
  15. V. Ganapathy, B. Karunagaran, and S.-W. Rhee, “Improved performance of dye-sensitized solar cells with TiO2/alumina core-shell formation using atomic layer deposition,” Journal of Power Sources, vol. 195, no. 15, pp. 5138–5143, 2010. View at Publisher · View at Google Scholar