Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2012, Article ID 607283, 9 pages
Research Article

Statistical Optimization of Operational Parameters for Enhanced Naphthalene Degradation by Photocatalyst

1School of Municipal and Environmental Engineering, Harbin Institute of Technology (HIT), 202 Haihe Road, Harbin 150090, China
2Institute of Architecture Design and Research, Harbin Institute of Technology, Harbin 150090, China
3State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, China
4Collage of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China

Received 11 December 2011; Revised 13 February 2012; Accepted 15 February 2012

Academic Editor: Stéphane Jobic

Copyright © 2012 Aijuan Zhou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The optimization of operational parameters for enhanced naphthalene degradation by TiO2/Fe3O4-SiO2 (TFS) photocatalyst was conducted using statistical experimental design and analysis. Central composite design method of response surface methodology (RSM) was adopted to investigate the optimum value of the selected factors for achieving maximum naphthalene degradation. Experimental results showed that irradiation time, pH, and TFS photocatalyst loading had significant influence on naphthalene degradation and the maximum degradation rate of 97.39% was predicted when the operational parameters were irradiation time 97.1 min, pH 2.1, and catalyst loading 0.962 g/L, respectively. The results were further verified by repeated experiments under optimal conditions. The excellent correlation between predicted and measured values further confirmed the validity and practicability of this statistical optimum strategy.