Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2012 (2012), Article ID 619530, 11 pages
http://dx.doi.org/10.1155/2012/619530
Review Article

Nanophotonics for Molecular Diagnostics and Therapy Applications

1CIGMH, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
2Instituto de Nanociencia de Aragón, Universidad de Zaragoza, Campus Río Ebro, Edifício I+D, Mariano Esquillor s/n, 50018 Zaragoza, Spain
3REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal

Received 15 June 2011; Accepted 10 July 2011

Academic Editor: Danuta Wrobel

Copyright © 2012 João Conde et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, and M. Naruse, Principles of Nanophotonics, Series in Optics and Optoelectronics, Taylor & Francis, CRC Press, 2008.
  2. Y. Shen and P. N. Prasad, “Nanophotonics: a new multidisciplinary frontier,” Applied Physics B, vol. 74, no. 7-8, pp. 641–645, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Lammers, S. Aime, W. E. Hennink, G. Storm, and F. Kiessling, “Theranostic nanomedicines,” Accounts of Chemical Research. In press.
  4. F. Pene, E. Courtine, A. Cariou, and J. P. Mira, “Toward theragnostics,” Critical Care Medicine, vol. 37, no. 1, pp. S50–S58, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature, vol. 424, no. 6950, pp. 824–830, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, vol. 25 of Springer Series in Materials Science, Springer, Berlin, Germany, 1995.
  7. M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chemical Reviews, vol. 104, no. 1, pp. 293–346, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. S. Eustis and M. A. El-Sayed, “Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chemical Society Reviews, vol. 35, no. 3, pp. 209–217, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chemical Reviews, vol. 107, no. 11, pp. 4797–4862, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. W. Zhao, M. A. Brook, and Y. Li, “Design of gold nanoparticle-based colorimetric biosensing assays,” ChemBioChem, vol. 9, no. 15, pp. 2363–2371, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Materials, vol. 7, no. 6, pp. 442–453, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. P. Baptista, G. Doria, D. Henriques, E. Pereira, and R. Franco, “Colorimetric detection of eukaryotic gene expression with DNA-derivatized gold nanoparticles,” Journal of Biotechnology, vol. 119, no. 2, pp. 111–117, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. P. Baptista, E. Pereira, P. Eaton et al., “Gold nanoparticles for the development of clinical diagnosis methods,” Analytical and Bioanalytical Chemistry, vol. 391, no. 3, pp. 943–950, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. Y. C. Cao, R. Jin, C. S. Thaxton, and C. A. Mirkin, “A two-color-change, nanoparticle-based method for DNA detection,” Talanta, vol. 67, no. 3, pp. 449–455, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. M. M. C. Cheng, G. Cuda, Y. L. Bunimovich et al., “Nanotechnologies for biomolecular detection and medical diagnostics,” Current Opinion in Chemical Biology, vol. 10, no. 1, pp. 11–19, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. J. Conde, J. M. de la Fuente, and P. V. Baptista, “RNA quantification using gold nanoprobes - application to cancer diagnostics,” Journal of Nanobiotechnology, vol. 8, article no. 5, 2010. View at Publisher · View at Google Scholar · View at PubMed
  17. P. Costa, A. Amaro, A. Botelho, J. Inácio, and P. V. Baptista, “Gold nanoprobe assay for the identification of mycobacteria of the Mycobacterium tuberculosis complex,” Clinical Microbiology and Infection, vol. 16, no. 9, pp. 1464–1469, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Doria, R. Franco, and P. Baptista, “Nanodiagnostics: fast colorimetric method for single nucleotide polymorphism/mutation detection,” IET Nanobiotechnology, vol. 1, no. 4, pp. 53–57, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science, vol. 277, no. 5329, pp. 1078–1081, 1997. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Li and L. Rothberg, “Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 39, pp. 14036–14039, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, “A DNA-based method for rationally assembling nanoparticles into macroscopic materials,” Nature, vol. 382, no. 6592, pp. 607–609, 1996. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. W. J. Qin and L. Y. L. Yung, “Nanoparticle-based detection and quantification of DNA with single nucleotide polymorphism (SNP) discrimination selectivity,” Nucleic Acids Research, vol. 35, no. 17, article no. e111, 2007. View at Publisher · View at Google Scholar · View at PubMed
  23. K. Sato, K. Hosokawa, and M. Maeda, “Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization,” Journal of the American Chemical Society, vol. 125, no. 27, pp. 8102–8103, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. K. Sato, K. Hosokawa, and M. Maeda, “Non-cross-linking gold nanoparticle aggregation as a detection method for single-base substitutions,” Nucleic Acids Research, vol. 33, no. 1, article e4, 2005. View at Google Scholar
  25. J. J. Storhoff, A. D. Lucas, V. Garimella, Y. P. Bao, and U. R. Müller, “Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes,” Nature Biotechnology, vol. 22, no. 7, pp. 883–887, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. T. A. Taton, C. A. Mirkin, and R. L. Letsinger, “Scanometric DNA array detection with nanoparticle probes,” Science, vol. 289, no. 5485, pp. 1757–1760, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. C. S. Thaxton, D. G. Georganopoulou, and C. A. Mirkin, “Gold nanoparticle probes for the detection of nucleic acid targets,” Clinica Chimica Acta, vol. 363, no. 1-2, pp. 120–126, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. C. C. You, O. R. Miranda, B. Gider et al., “Detection and identification of proteins using nanoparticle-fluorescent polymer 'chemical nose' sensors,” Nature Nanotechnology, vol. 2, no. 5, pp. 318–323, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Letters, vol. 5, no. 5, pp. 829–834, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. S. Kumar, N. Harrison, R. Richards-Kortum, and K. Sokolov, “Plasmonic nanosensors for imaging intracellular biomarkers in live cells,” Nano Letters, vol. 7, no. 5, pp. 1338–1343, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. W.-C. Law, K.-T. Yong, A. Baev, and P. N. Prasad, “Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement,” ACS Nano, vol. 5, no. 6, pp. 4858–4864, 2011. View at Publisher · View at Google Scholar · View at PubMed
  32. J. S. Mitchell and T. E. Lowe, “Ultrasensitive detection of testosterone using conjugate linker technology in a nanoparticle-enhanced surface plasmon resonance biosensor,” Biosensors and Bioelectronics, vol. 24, no. 7, pp. 2177–2183, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. J. M. Nam, C. S. Thaxton, and C. A. Mirkin, “Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins,” Science, vol. 301, no. 5641, pp. 1884–1886, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 3, pp. 996–1001, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. A. J. Haes, L. Chang, W. L. Klein, and R. P. Van Duyne, “Detection of a biomarker for Alzheimer's disease from synthetic and clinical samples using a nanoscale optical biosensor,” Journal of the American Chemical Society, vol. 127, no. 7, pp. 2264–2271, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Letters, vol. 3, no. 8, pp. 1057–1062, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Raschke, S. Kowarik, T. Franzl et al., “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Letters, vol. 3, no. 7, pp. 935–938, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. M. K. Hossain and Y. Ozaki, “Surface-enhanced Raman scattering: facts and inline trends,” Current Science, vol. 97, no. 2, pp. 192–201, 2009. View at Google Scholar · View at Scopus
  39. D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” Journal of Electroanalytical Chemistry, vol. 84, no. 1, pp. 1–20, 1977. View at Google Scholar · View at Scopus
  40. M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” Journal of the American Chemical Society, vol. 99, no. 15, pp. 5215–5217, 1977. View at Google Scholar · View at Scopus
  41. B. Pettinger, “Light scattering by adsorbates at Ag particles: quantum-mechanical approach for energy transfer induced interfacial optical processes involving surface plasmons, multipoles, and electron-hole pairs,” The Journal of Chemical Physics, vol. 85, no. 12, pp. 7442–7451, 1986. View at Google Scholar · View at Scopus
  42. A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” Journal of the American Chemical Society, vol. 121, no. 43, pp. 9932–9939, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. P. Etchegoin, H. Liem, R. C. Maher et al., “A novel amplification mechanism for surface enhanced Raman scattering,” Chemical Physics Letters, vol. 366, no. 1-2, pp. 115–121, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Otto, “On the electronic contribution to single molecule surface enhanced Raman spectroscopy,” Indian Journal of Physics, vol. 77B, pp. 63–73, 2003. View at Google Scholar
  45. S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” Nano Letters, vol. 6, no. 11, pp. 2630–2636, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. S. C. Pînzaru, L. M. Andronie, I. Domsa, O. Cozar, and S. Astilean, “Bridging biomolecules with nanoparticles: surface-enhanced Raman scattering from colon carcinoma and normal tissue,” Journal of Raman Spectroscopy, vol. 39, no. 3, pp. 331–334, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. S. P. Mulvaney, M. D. Musick, C. D. Keating, and M. J. Natan, “Glass-coated, analyte-tagged nanoparticles: a new tagging system based on detection with surface-enhanced Raman scattering,” Langmuir, vol. 19, no. 11, pp. 4784–4790, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. W. E. Doering, M. E. Piotti, M. J. Natan, and R. G. Freeman, “SERS as a foundation for nanoscale, optically detected biological labels,” Advanced Materials, vol. 19, no. 20, pp. 3100–3108, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. L. Sun, C. Yu, and J. Irudayaraj, “Surface-enhanced Raman scattering based nonfluorescent probe for multiplex DNA detection,” Analytical Chemistry, vol. 79, no. 11, pp. 3981–3988, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. X. Qian, X. Zhou, and S. Nie, “Surface-enhanced raman nanoparticle beacons based on bioconjugated gold nanocrystals and long range plasmonic coupling,” Journal of the American Chemical Society, vol. 130, no. 45, pp. 14934–14935, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. K. K. Strelau, A. Brinker, C. Schnee, K. Weber, R. Möller, and J. Popp, “Detection of PCR products amplified from DNA of epizootic pathogens using magnetic nanoparticles and SERS,” Journal of Raman Spectroscopy, vol. 42, no. 3, pp. 243–250, 2011. View at Publisher · View at Google Scholar
  52. M. B. Wabuyele, F. Yan, and T. Vo-Dinh, “Plasmonics nanoprobes: detection of single-nucleotide polymorphisms in the breast cancer BRCA1 gene,” Analytical and Bioanalytical Chemistry, vol. 398, no. 2, pp. 729–736, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. J. Neng, M. H. Harpster, H. Zhang, J. O. Mecham, W. C. Wilson, and P. A. Johnson, “A versatile SERS-based immunoassay for immunoglobulin detection using antigen-coated gold nanoparticles and malachite green-conjugated protein A/G,” Biosensors and Bioelectronics, vol. 26, no. 3, pp. 1009–1015, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science, vol. 297, no. 5586, pp. 1536–1540, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. Y. C. Cao, R. Jin, J. M. Nam, C. S. Thaxton, and C. A. Mirkin, “Raman dye-labeled nanoparticle probes for proteins,” Journal of the American Chemical Society, vol. 125, no. 48, pp. 14676–14677, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. J. D. Driskell and R. A. Tripp, “Label-free SERS detection of microRNA based on affinity for an unmodified silver nanorod array substrate,” Chemical Communications, vol. 46, no. 19, pp. 3298–3300, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. A. Barhoumi, D. Zhang, F. Tam, and N. J. Halas, “Surface-enhanced raman spectroscopy of DNA,” Journal of the American Chemical Society, vol. 130, no. 16, pp. 5523–5529, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. D. Graham, R. Stevenson, D. G. Thompson, L. Barrett, C. Dalton, and K. Faulds, “Combining functionalised nanoparticles and SERS for the detection of DNA relating to disease,” Faraday Discussions, vol. 149, pp. 291–299, 2011. View at Publisher · View at Google Scholar
  59. C. V. Pagba, S. M. Lane, H. Cho, and S. Wachsmann-Hogiu, “Direct detection of aptamer-thrombin binding via surface-enhanced Raman spectroscopy,” Journal of Biomedical Optics, vol. 15, no. 4, Article ID 047006, 2010. View at Google Scholar
  60. B. Guven, N. Basaran-Akgul, E. Temur, U. Tamer, and I. H. Boyaci, “SERS-based sandwich immunoassay using antibody coated magnetic nanoparticles for Escherichia coli enumeration,” Analyst, vol. 136, no. 4, pp. 740–748, 2011. View at Publisher · View at Google Scholar · View at PubMed
  61. W. Cai, D. W. Shin, K. Chen et al., “Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects,” Nano Letters, vol. 6, no. 4, pp. 669–676, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. J. Kneipp, H. Kneipp, M. McLaughlin, D. Brown, and K. Kneipp, “In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates,” Nano Letters, vol. 6, no. 10, pp. 2225–2231, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. W. C. W. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science, vol. 281, no. 5385, pp. 2016–2018, 1998. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science, vol. 281, no. 5385, pp. 2013–2016, 1998. View at Publisher · View at Google Scholar · View at Scopus
  65. H. Weller, “Colloidal semiconductor Q-particles: chemistry in the transition region between solid state and molecules,” Angewandte Chemie - International Edition, vol. 32, no. 1, pp. 41–53, 1993. View at Google Scholar · View at Scopus
  66. D. Gerion, F. Chen, B. Kannan et al., “Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays,” Analytical Chemistry, vol. 75, no. 18, pp. 4766–4772, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. S. Pathak, S. K. Choi, N. Arnheim, and M. E. Thompson, “Hydroxylated quantum dots as luminescent probes for in situ hybridization,” Journal of the American Chemical Society, vol. 123, no. 17, pp. 4103–4104, 2001. View at Publisher · View at Google Scholar · View at Scopus
  68. I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, “Self-assembled nanoscale biosensors based on quantum dot FRET donors,” Nature Materials, vol. 2, no. 9, pp. 630–638, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. L. M. Devi and D. P. S. Negi, “Sensitive and selective detection of adenine using fluorescent ZnS nanoparticles,” Nanotechnology, vol. 22, no. 24, Article ID 245502, 2011. View at Publisher · View at Google Scholar · View at PubMed
  70. J. Gersten and A. Nitzan, “Spectroscopic properties of molecules interacting with small dielectric particles,” The Journal of Chemical Physics, vol. 75, no. 3, pp. 1139–1152, 1981. View at Google Scholar · View at Scopus
  71. K. A. Kang, J. Wang, J. B. Jasinski, and S. Achilefu, “Fluorescence manipulation by gold nanoparticles: from complete quenching to extensive enhancement,” Journal of Nanobiotechnology, vol. 9, article 16, 2011. View at Publisher · View at Google Scholar · View at PubMed
  72. A. Quarta, R. D. Corato, L. Manna, A. Ragusa, and T. Pellegrino, “Fluorescent-magnetic hybrid nanostructures: preparation, properties, and applications in biology,” IEEE Transactions on Nanobioscience, vol. 6, no. 4, pp. 298–308, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. J. R. Lakowicz, J. Malicka, E. Matveeva, I. Gryczynski, and Z. Gryczynski, “Plasmonic technology: novel approach to ultrasensitive immunoassays,” Clinical Chemistry, vol. 51, no. 10, pp. 1914–1922, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. J. R. Lakowicz, “Plasmonics in biology and plasmon-controlled fluorescence,” Plasmonics, vol. 1, no. 1, pp. 5–33, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. I. L. Medintz and H. Mattoussi, “Quantum dot-based resonance energy transfer and its growing application in biology,” Physical Chemistry Chemical Physics, vol. 11, no. 1, pp. 17–45, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. P. C. Ray, G. K. Darbha, A. Ray, J. Walker, and W. Hardy, “Gold nanoparticle based FRET for DNA detection,” Plasmonics, vol. 2, no. 4, pp. 173–183, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. Y. Liu, Y. Wang, J. Jin, H. Wang, R. Yang, and W. Tan, “Fluorescent assay of DNA hybridization with label-free molecular switch: reducing background-signal and improving specificity by using carbon nanotubes,” Chemical Communications, no. 6, pp. 665–667, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. W. Bai, H. Zheng, Y. Long, X. Mao, M. Gao, and L. Zhang, “A carbon dots-based fluorescence turn-on method for DNA determination,” Analytical Sciences, vol. 27, no. 3, pp. 243–246, 2011. View at Publisher · View at Google Scholar
  79. B. Tang, N. Zhang, Z. Chen et al., “Probing hydroxyl radicals and their imaging in living cells by use of FAM-DNA-Au nanoparticles,” Chemistry, vol. 14, no. 2, pp. 522–528, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. Z. S. Wu, J. H. Jiang, L. Fu, G. L. Shen, and R. Q. Yu, “Optical detection of DNA hybridization based on fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles,” Analytical Biochemistry, vol. 353, no. 1, pp. 22–29, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  81. S. H. De Paoli Lacerda, J. J. Park, C. Meuse et al., “Interaction of gold nanoparticles with common human blood proteins,” ACS Nano, vol. 4, no. 1, pp. 365–379, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. S. Mayilo, M. A. Kloster, M. Wunderlich et al., “Long-range fluorescence quenching by gold nanoparticles in a sandwich immunoassay for cardiac troponin T,” Nano Letters, vol. 9, no. 12, pp. 4558–4563, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. X. He, J. Gao, S. S. Gambhir, and Z. Cheng, “Near-infrared fluorescent nanoprobes for cancer molecular imaging: status and challenges,” Trends in Molecular Medicine, vol. 16, no. 12, pp. 574–583, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. Y. T. Su, G. Y. Lan, W. Y. Chen, and H. T. Chang, “Detection of copper ions through recovery of the fluorescence of DNA-templated copper/silver nanoclusters in the presence of mercaptopropionic acid,” Analytical Chemistry, vol. 82, no. 20, pp. 8566–8572, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  85. Y. Cho, S. S. Lee, and J. H. Jung, “Recyclable fluorimetric and colorimetric mercury-specific sensor using porphyrin-functionalized Au@SiO2 core/shell nanoparticles,” Analyst, vol. 135, no. 7, pp. 1551–1555, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  86. Y. Xiang, A. Tong, and Y. Lu, “Abasic site-containing DNAzyme and aptamer for label-free fluorescent detection of Pb2+ and adenosine with high sensitivity, selectivity, and tunable dynamic range,” Journal of the American Chemical Society, vol. 131, no. 42, pp. 15352–15357, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. R. Gill, M. Zayats, and I. Willner, “Semiconductor quantum dots for bioanalysis,” Angewandte Chemie - International Edition, vol. 47, no. 40, pp. 7602–7625, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  88. J. H. Lee, Y. M. Huh, Y. W. Jun et al., “Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging,” Nature Medicine, vol. 13, no. 1, pp. 95–99, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  89. E. I. Altinoǧlu and J. H. Adair, “Near infrared imaging with nanoparticles,” Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, vol. 2, no. 5, pp. 461–477, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  90. P. Vartholomeos, M. Fruchard, A. Ferreira, and C. Mavroidis, “MRI-guided nanorobotic systems for therapeutic and diagnostic applications,” Annual Review of Biomedical Engineering, vol. 13, pp. 157–184, 2011. View at Google Scholar
  91. E. V. Zagaynova, M. V. Shirmanova, M. Y. Kirillin et al., “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Physics in Medicine and Biology, vol. 53, no. 18, pp. 4995–5009, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  92. J. C. Kah, M. Olivo, T. H. Chow et al., “Control of optical contrast using gold nanoshells for optical coherence tomography imaging of mouse xenograft tumor model in vivo,” Journal of Biomedical Optics, vol. 14, no. 5, Article ID 054015, 2009. View at Google Scholar
  93. A. L. Oldenburg, M. N. Hansen, T. S. Ralston, A. Wei, and S. A. Boppart, “Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography,” Journal of Materials Chemistry, vol. 19, no. 35, pp. 6407–6411, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  94. X. Yang, E. W. Stein, S. Ashkenazi, and L. V. Wang, “Nanoparticles for photoacoustic imaging,” Wiley Interdisciplinary Reviews. Nanomedicine and nanobiotechnology, vol. 1, no. 4, pp. 360–368, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  95. M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The 'lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chemical Physics Letters, vol. 317, no. 6, pp. 517–523, 2000. View at Google Scholar · View at Scopus
  96. R. Damadian, “Tumor detection by nuclear magnetic resonance,” Science, vol. 171, no. 3976, pp. 1151–1153, 1971. View at Google Scholar · View at Scopus
  97. D. S. Mathew and R. S. Juang, “An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions,” Chemical Engineering Journal, vol. 129, no. 1–3, pp. 51–65, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. S. Laurent, D. Forge, M. Port et al., “Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations and biological applications,” Chemical Reviews, vol. 108, no. 6, pp. 2064–2110, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  99. Y. W. Jun, Y. M. Huh, J. S. Choi et al., “Nanoscale size effect of magnetic nanocrystals and their utilisation for cancer diagnosis via magnetic resonance imaging,” Journal of the American Chemical Society, vol. 127, no. 16, pp. 5732–5733, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  100. R. T. Branca, Z. I. Cleveland, B. Fubara et al., “Molecular MRI for sensitive and specific detection of lung metastases,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 8, pp. 3693–3697, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  101. D. Kim, M. K. Yu, T. S. Lee, J. J. Park, Y. Y. Jeong, and S. Jon, “Amphiphilic polymer-coated hybrid nanoparticles as CT/MRI dual contrast agents,” Nanotechnology, vol. 22, no. 15, Article ID 155101, 2011. View at Publisher · View at Google Scholar · View at PubMed
  102. D. Huang, E. A. Swanson, C. P. Lin et al., “Optical coherence tomography,” Science, vol. 254, no. 5035, pp. 1178–1181, 1991. View at Google Scholar · View at Scopus
  103. J. M. Schmitt, “Optical Coherence Tomography (OCT): a review,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 5, no. 4, pp. 1205–1215, 1999. View at Publisher · View at Google Scholar · View at Scopus
  104. H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review. Clinical and research applications,” JACC: Cardiovascular Interventions, vol. 2, no. 11, pp. 1035–1046, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  105. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Letters, vol. 7, no. 7, pp. 1929–1934, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  106. H. Y. Tseng, C. K. Lee, S. Y. Wu et al., “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology, vol. 21, no. 29, Article ID 295102, 2010. View at Publisher · View at Google Scholar · View at PubMed
  107. A. S. Paranjape, R. Kuranov, S. Baranov et al., “Depth resolved photothermal OCT detection of macrophages in tissue using nanorose,” Biomedical Optics Express, vol. 1, no. 1, pp. 2–16, 2010. View at Google Scholar
  108. Y. Su, F. Zhang, K. Xu, J. Yao, and R. K. Wang, “A photoacoustic tomography system for imaging of biological tissues,” Journal of Physics D, vol. 38, no. 15, pp. 2640–2644, 2005. View at Publisher · View at Google Scholar · View at Scopus
  109. K. S. Valluru, B. K. Chinni, and N. A. Rao, “Photoacoustic imaging: opening new frontiers in medical imaging,” Journal of Clinical Imaging Science, vol. 1, article 24, 2011. View at Google Scholar
  110. X. Yang, S. E. Skrabalak, Z. Y. Li, Y. Xia, and L. V. Wang, “Photoacoustic tomography of a rat cerebral cortex in vivo with Au nanocages as an optical contrast agent,” Nano Letters, vol. 7, no. 12, pp. 3798–3802, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  111. M. Eghtedari, A. Oraevsky, J. A. Copland, N. A. Kotov, A. Conjusteau, and M. Motamedi, “High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system,” Nano Letters, vol. 7, no. 7, pp. 1914–1918, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  112. K. H. Song, C. Kim, K. Maslov, and L. V. Wang, “Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes,” European Journal of Radiology, vol. 70, no. 2, pp. 227–231, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  113. M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chemical Physics Letters, vol. 317, no. 6, pp. 517–523, 2000. View at Google Scholar · View at Scopus
  114. H. Wang, T. B. Huff, D. A. Zweifel et al., “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 44, pp. 15752–15756, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  115. G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Physical Review B, vol. 33, no. 12, pp. 7923–7936, 1986. View at Publisher · View at Google Scholar · View at Scopus
  116. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Letters, vol. 7, no. 4, pp. 941–945, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  117. K. Imura, T. Nagahara, and H. Okamoto, “Plasmon mode imaging of single gold nanorods,” Journal of the American Chemical Society, vol. 126, no. 40, pp. 12730–12731, 2004. View at Google Scholar · View at Scopus
  118. K. T. Yong, I. Roy, H. Ding, E. J. Bergey, and P. N. Prasad, “Biocompatible near-infrared quantum dots as ultrasensitive probes for long-term in vivo imaging applications,” Small, vol. 5, no. 17, pp. 1997–2004, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  119. A. M. Smith, H. Duan, A. M. Mohs, and S. Nie, “Bioconjugated quantum dots for in vivo molecular and cellular imaging,” Advanced Drug Delivery Reviews, vol. 60, no. 11, pp. 1226–1240, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  120. E. G. Soltesz, S. Kim, R. G. Laurence et al., “Intraoperative sentinel lymph node mapping of the lung using near-infrared fluorescent quantum dots,” Annals of Thoracic Surgery, vol. 79, no. 1, pp. 269–277, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  121. C. P. Parungo, Y. L. Colson, S. W. Kim et al., “Sentinel lymph node mapping of the pleural space,” Chest, vol. 127, no. 5, pp. 1799–1804, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  122. J. P. Zimmer, S. W. Kim, S. Ohnishi, E. Tanaka, J. V. Frangioni, and M. G. Bawendi, “Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging,” Journal of the American Chemical Society, vol. 128, no. 8, pp. 2526–2527, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  123. H. Kobayashi, Y. Hama, Y. Koyama et al., “Simultaneous multicolor imaging of five different lymphatic basins using quantum dots,” Nano Letters, vol. 7, no. 6, pp. 1711–1716, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  124. Y. Hama, Y. Koyama, Y. Urano, P. L. Choyke, and H. Kobayashi, “Simultaneous two-color spectral fluorescence lymphangiography with near infrared quantum dots to map two lymphatic flows from the breast and the upper extremity,” Breast Cancer Research and Treatment, vol. 103, no. 1, pp. 23–28, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  125. S. Kim, Y. T. Lim, E. G. Soltesz et al., “Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping,” Nature Biotechnology, vol. 22, no. 1, pp. 93–97, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  126. Y. T. Lim, S. Kim, A. Nakayama, N. E. Stott, M. G. Bawendi, and J. V. Frangioni, “Selection of quantum dot wavelengths for biomedical assays and imaging,” Molecular Imaging, vol. 2, no. 1, pp. 50–64, 2003. View at Publisher · View at Google Scholar · View at Scopus
  127. J. D. Smith, G. W. Fisher, A. S. Waggoner, and P. G. Campbell, “The use of quantum dots for analysis of chick CAM vasculature,” Microvascular Research, vol. 73, no. 2, pp. 75–83, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  128. D. R. Larson, W. R. Zipfel, R. M. Williams et al., “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science, vol. 300, no. 5624, pp. 1434–1436, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  129. X. Yu, L. Chen, K. Li et al., “Immunofluorescence detection with quantum dot bioconjugates for hepatoma in vivo,” Journal of Biomedical Optics, vol. 12, no. 1, Article ID 014008, 2007. View at Publisher · View at Google Scholar · View at PubMed
  130. H. Tada, H. Higuchi, T. M. Wanatabe, and N. Ohuchi, “In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice,” Cancer Research, vol. 67, no. 3, pp. 1138–1144, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  131. M. E. Åkerman, W. C. W. Chan, P. Laakkonen, S. N. Bhatia, and E. Ruoslahti, “Nanocrystal targeting in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 20, pp. 12617–12621, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  132. X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nature Biotechnology, vol. 22, no. 8, pp. 969–976, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  133. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles,” Photochemistry and Photobiology, vol. 82, no. 2, pp. 412–417, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  134. J. Chen, D. Wang, J. Xi et al., “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Letters, vol. 7, no. 5, pp. 1318–1322, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  135. Y. Haba, C. Kojima, A. Harada, T. Ura, H. Horinaka, and K. Kono, “Preparation of poly(ethylene glycol)-modified poly(amido amine) dendrimers encapsulating gold nanoparticles and their heat-generating ability,” Langmuir, vol. 23, no. 10, pp. 5243–5246, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  136. D. K. Kirui, D. A. Rey, and C. A. Batt, “Gold hybrid nanoparticles for targeted phototherapy and cancer imaging,” Nanotechnology, vol. 21, no. 10, Article ID 105105, 2010. View at Publisher · View at Google Scholar · View at PubMed
  137. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” Journal of the American Chemical Society, vol. 128, no. 6, pp. 2115–2120, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  138. X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Applications of gold nanorods for cancer imaging and photothermal therapy,” Methods in Molecular Biology, vol. 624, pp. 343–357, 2010. View at Publisher · View at Google Scholar · View at Scopus
  139. W. S. Kuo, C. N. Chang, Y. T. Chang et al., “Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging,” Angewandte Chemie - International Edition, vol. 49, no. 15, pp. 2711–2715, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  140. B. Van De Broek, N. Devoogdt, A. Dhollander et al., “Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy,” ACS Nano, vol. 5, no. 6, pp. 4319–4328, 2011. View at Publisher · View at Google Scholar · View at PubMed
  141. L. R. Hirsch, R. J. Stafford, J. A. Bankson et al., “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 23, pp. 13549–13554, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  142. C. Loo, L. Hirsch, M. H. Lee et al., “Gold nanoshell bioconjugates for molecular imaging in living cells,” Optics Letters, vol. 30, no. 9, pp. 1012–1014, 2005. View at Publisher · View at Google Scholar · View at Scopus
  143. C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Letters, vol. 5, no. 4, pp. 709–711, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  144. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers in Medical Science, vol. 23, no. 3, pp. 217–228, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  145. S. B. Brown and S. H. Ibbotson, “Photodynamic therapy and cancer,” BMJ, vol. 339, Article ID b2459, 2009. View at Publisher · View at Google Scholar
  146. J. Cadet, “The photodynamic therapy of cancer cells,” Photochemistry and photobiology, vol. 87, no. 1, p. 1, 2011. View at Google Scholar
  147. A. Lin and S. M. Hahn, “Photodynamic therapy: a light in the darkness?” Clinical Cancer Research, vol. 15, no. 13, pp. 4252–4253, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  148. M. A. MacCormack, “Photodynamic therapy,” Advances in Dermatology, vol. 22, pp. 219–258, 2006. View at Publisher · View at Google Scholar · View at Scopus
  149. P. Zhang, W. Steelant, M. Kumar, and M. Scholfield, “Versatile photosensitizers for photodynamic therapy at infrared excitation,” Journal of the American Chemical Society, vol. 129, no. 15, pp. 4526–4527, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  150. B. Ungun, R. K. Prud'homme, S. J. Budijono et al., “Nanofabricated upconversion nanoparticles for photodynamic therapy,” Optics Express, vol. 17, no. 1, pp. 80–86, 2009. View at Publisher · View at Google Scholar · View at Scopus
  151. D. K. Chatterjee and Z. Yong, “Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells,” Nanomedicine, vol. 3, no. 1, pp. 73–82, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  152. H. S. Qian, H. C. Guo, P. C. L. Ho, R. Mahendran, and Y. Zhang, “Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy,” Small, vol. 5, no. 20, pp. 2285–2290, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus