Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2012, Article ID 687262, 9 pages
http://dx.doi.org/10.1155/2012/687262
Research Article

Photocatalytic Ethanol Oxidative Dehydrogenation over Pt/TiO2: Effect of the Addition of Blue Phosphors

1Instituto de Ciencia de Materiales de Sevilla (ICMS), Consejo Superior de Investigaciones Científicas CSIC, Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
2Department of Industrial Engineering, University of Salerno, Via Ponte Don Melillo, 84084 Fisciano, Italy
3Nano Mates, Research Centre for Nanomaterials and Nanotechnology at Salerno University, University of Salerno, Via Ponte Don Melillo, 84084 Fisciano, Italy

Received 16 July 2011; Accepted 28 August 2011

Academic Editor: Shifu Chen

Copyright © 2012 J. J. Murcia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Musawir, P. N. Davey, G. Kelly, and I. V. Kozhevnikov, “Highly efficient liquid-phase oxidation of primary alcohols to aldehydes with oxygen catalysed by Ru-Co oxide,” Chemical Communications, vol. 9, no. 12, pp. 1414–1415, 2003. View at Google Scholar · View at Scopus
  2. D. Ramakrishna and B. R. Bhat, “A catalytic process for the selective oxidation of alcohols by copper (II) complexes,” Inorganic Chemistry Communications, vol. 14, no. 5, pp. 690–693, 2011. View at Publisher · View at Google Scholar
  3. S. Velusamy, A. Srinivasan, and T. Punniyamurthy, “Copper(II) catalyzed selective oxidation of primary alcohols to aldehydes with atmospheric oxygen,” Tetrahedron Letters, vol. 47, no. 6, pp. 923–926, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. R. A. Sheldon and J. K. Kochi, Metal-Catalyzed Oxidation of Organic Compounds, Academic Press, New York, NY, USA, 1981.
  5. M. Hudlicky, Oxidations in Organic Chemistry, An American Chemical Society Publication, Washington, DC, USA, 1990.
  6. U. R. Pillai and E. Sahle-Demessie, “Selective oxidation of alcohols in gas phase using light-activated titanium dioxide,” Journal of Catalysis, vol. 211, no. 2, pp. 434–444, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. A. A. Abd El-Raady, N. E. Fouad, M. A. Mohamed, and S. A. Halawy, “Effect of the preparation method of Al-Mg-O catalysts on the selective decomposition of ethanol,” Monatshefte fur Chemie, vol. 133, no. 10, pp. 1351–1361, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Yee, S. J. Morrison, and H. Idriss, “A study of the reactions of ethanol on CeO2 and Pd/CeO2 by steady state reactions, temperature programmed desorption, and in situ FT-IR,” Journal of Catalysis, vol. 186, no. 2, pp. 279–295, 1999. View at Google Scholar · View at Scopus
  9. W. Zhang, A. Desikan, and S. T. Oyama, “Effect of support in ethanol oxidation on molybdenum oxide,” Journal of Physical Chemistry, vol. 99, no. 39, pp. 14468–14476, 1995. View at Google Scholar · View at Scopus
  10. S. A. Halawy and M. A. Mohamed, “The effect of different ZnO precursors on the catalytic decomposition of ethanol,” Journal of Molecular Catalysis A, vol. 98, no. 2, pp. L63–L68, 1995. View at Google Scholar · View at Scopus
  11. R. Tesser, V. Maradei, M. Di Serio, and E. Santacesaria, “Kinetics of the oxidative dehydrogenation of ethanol to acetaldehyde on V2O5/TiO2-SiO2 catalysts prepared by grafting,” Industrial and Engineering Chemistry Research, vol. 43, no. 7, pp. 1623–1633, 2004. View at Google Scholar · View at Scopus
  12. E. A. Sales, T. R.O. De Souza, R. C. Santos, and H. M.C. Andrade, “N2O decomposition coupled with ethanol oxidative dehydrogenation reaction on carbon-supported copper catalysts promoted by palladium and cobalt,” Catalysis Today, vol. 107-108, pp. 114–119, 2005. View at Publisher · View at Google Scholar
  13. H. H. Tseng, M. Y. Wey, and C. H. Fu, “Carbon materials as catalyst supports for SO2 oxidation: catalytic activity of CuO-AC,” Carbon, vol. 41, no. 1, pp. 139–149, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. S. T. Oyama and W. Zhang, “True and spectator intermediates in catalysis: the case of ethanol oxidation on molybdenum oxide as observed by in situ laser Raman spectroscopy,” Journal of the American Chemical Society, vol. 118, no. 30, pp. 7173–7177, 1996. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Nair, J. E. Gatt, J. T. Miller, and C. D. Baertsch, “Mechanistic insights into the formation of acetaldehyde and diethyl ether from ethanol over supported VOx, MoOx, and WOx catalysts,” Journal of Catalysis, vol. 279, no. 1, pp. 144–154, 2011. View at Publisher · View at Google Scholar
  16. E. Santacesaria, A. Sorrentino, R. Tesser, M. Di Serio, and A. Ruggiero, “Oxidative dehydrogenation of ethanol to acetaldehyde on V2O5/TiO2-SiO2 catalysts obtained by grafting vanadium and titanium alkoxides on silica,” Journal of Molecular Catalysis A: Chemical, vol. 204-205, pp. 617–627, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Ciambelli, D. Sannino, V. Palma, V. Vaiano, and R. S. Mazzei, “Intensification of gas-phase photoxidative dehydrogenation of ethanol to acetaldehyde by using phosphors as light carriers,” Photochemical and Photobiological Sciences, vol. 10, pp. 414–418, 2011. View at Google Scholar
  18. C. Della Pina, E. Falletta, L. Prati, and M. Rossi, “Selective oxidation using gold,” Chemical Society Reviews, vol. 37, no. 9, pp. 2077–2095, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. P. Korovchenko, C. Donze, P. Gallezot, and M. Besson, “Oxidation of primary alcohols with air on carbon-supported platinum catalysts for the synthesis of aldehydes or acids,” Catalysis Today, vol. 121, no. 1-2, pp. 13–21, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. C. H. Christensen, B. Jørgensen, J. Rass-Hansen et al., “Formation of acetic acid by aqueous-phase oxidation of ethanol with air in the presence of a heterogeneous gold catalyst,” Angewandte Chemie—International Edition, vol. 45, no. 28, pp. 4648–4651, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. A. Haarstrick, O. M. Kut, and E. Heinzle, “TiO2 -assisted degradation of environmentally relevant organic compounds in wastewater using a novel fluidized bed photoreactor,” Environmental Science and Technology, vol. 30, no. 3, pp. 817–824, 1996. View at Google Scholar · View at Scopus
  22. A. Sirisuk, C. G. Hill Jr., and M. A. Anderson, “Photocatalytic degradation of ethylene over thin films of titania supported on glass rings,” Catalysis Today, vol. 54, no. 1, pp. 159–164, 1999. View at Google Scholar · View at Scopus
  23. D. M. Blake, Bibliography of Work on the Photocatalytic Removal of Hazardous Compounds from Water and Air Update Number 2 to October 1996, NREL/TP-430-22197, National Renewable Energy Laboratory, Golden, Colo, USA, 1996.
  24. J. M. Herrmann, C. Duchamp, M. Karkmaz et al., “Environmental green chemistry as defined by photocatalysis,” Journal of Hazardous Materials, vol. 146, no. 3, pp. 624–629, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. F. Denny, J. Scott, K. Chiang, W. Y. Teoh, and R. Amal, “Insight towards the role of platinum in the photocatalytic mineralisation of organic compounds,” Journal of Molecular Catalysis A: Chemical, vol. 263, no. 1-2, pp. 93–102, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. M. C. Hidalgo, M. Maicu, J. A. Navío, and G. Colón, “Study of the synergic effect of sulphate pre-treatment and platinisation on the highly improved photocatalytic activity of TiO2,” Applied Catalysis B: Environmental, vol. 81, no. 1-2, pp. 49–55, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Chiang, T. M. Lim, C. C. Lee, and L. Tsen, “Photocatalytic degradation and mineralization of bisphenol A by TiO2 and platinized TiO2,” Applied Catalysis A: General, vol. 261, no. 2, pp. 225–237, 2004. View at Google Scholar
  28. M. Lindner, J. Theurich, and D. W. Bahnemann, “Photocatalytic degradation of organic compounds: accelerating the process efficiency,” Water Science and Technology, vol. 35, no. 4, pp. 79–86, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. J. C. Crittenden, J. Liu, D. W. Hand, and D. L. Perram, “Photocatalytic oxidation of chlorinated hydrocarbons in water,” Water Research, vol. 31, no. 3, pp. 429–438, 1997. View at Publisher · View at Google Scholar · View at Scopus
  30. H. M. Coleman, K. Chiang, and R. Amal, “Effects of Ag and Pt on photocatalytic degradation of endocrine disrupting chemicals in water,” Chemical Engineering Journal, vol. 113, no. 1, pp. 65–72, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. U. Siemon, D. Bahnemann, J. J. Testa, D. Rodríguez, M. I. Litter, and N. Bruno, “Heterogeneous photocatalytic reactions comparing TiO2 and Pt/TiO2,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 148, no. 1-3, pp. 247–255, 2002. View at Publisher · View at Google Scholar
  32. J. Chen, D. F. Ollis, W. H. Rulkens, and H. Bruning, “Photocatalyzed oxidation of alcohols and organochlorides in the presence of native TiO2 and metallized TiO2 suspensions. Part (I): photocatalytic activity and pH influence,” Water Research, vol. 33, no. 3, pp. 661–668, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Chen, D. F. Ollis, W. H. Rulkens, and H. Bruning, “Photocatalyzed oxidation of alcohols and organochlorides in the presence of native TiO2 and metallized TiO2 suspensions. Part (II): photocatalytic mechanisms,” Water Research, vol. 33, no. 3, pp. 669–676, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. A. V. Vorontsov and V. P. Dubovitskaya, “Selectivity of photocatalytic oxidation of gaseous ethanol over pure and modified TiO2,” Journal of Catalysis, vol. 221, no. 1, pp. 102–109, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Ciambelli, D. Sannino, V. Palma, V. Vaiano, and R. S. Mazzei, “A step forwards in ethanol selective photo-oxidation,” Photochemical and Photobiological Sciences, vol. 8, no. 5, pp. 699–704, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. V. Vaiano, Heterogeneous photocatalytic selective oxidation of cyclohexane, Ph.D. thesis, University of Salerno, Salerno, Italy, 2006.
  37. V. Palma, D. Sannino, V. Vaiano, and P. Ciambelli, “Fluidized-bed reactor for the intensification of gas-phase photocatalytic oxidative dehydrogenation of cyclohexane,” Industrial and Engineering Chemistry Research, vol. 49, no. 21, pp. 10279–10286, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Colón, M. C. Hidalgo, and J. A. Navío, “Photocatalytic behaviour of sulphated TiO2 for phenol degradation,” Applied Catalysis B: Environmental, vol. 45, no. 1, pp. 39–50, 2003. View at Publisher · View at Google Scholar
  39. K. Okazaki, Y. Morikawa, S. Tanaka, K. Tanaka, and M. Kohyama, “Effects of stoichiometry on electronic states of Au and Pt supported on TiO2(110),” Journal of Materials Science, vol. 40, no. 12, pp. 3075–3080, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. M. C. Hidalgo, J. J. Murcia, J. A. Navío, and G. Colón, “Photodeposition of gold on titanium dioxide for photocatalytic phenol oxidation,” Applied Catalysis A: General, vol. 397, no. 1-2, pp. 112–120, 2011. View at Publisher · View at Google Scholar
  41. C. D. Wagner, A. V. Naumkin, A. Kraut-Vass, J. W. Allison, C. J. Powell, and J. R. Rumble Jr., “NIST X-ray photoelectron spectroscopy database,” http://srdata.nist.gov/xps/.
  42. University of Leipzig, Leipzig, Germany, http://www.zv.uni-leipzig.de/.
  43. J. Lee and W. Choi, “Photocatalytic reactivity of surface platinized TiO2: substrate specificity and the effect of Pt oxidation state,” Journal of Physical Chemistry B, vol. 109, no. 15, pp. 7399–7406, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. B. Llano, G. Restrepo, J. M. Marín, J. A. Navío, and M. C. Hidalgo, “Characterisation and photocatalytic properties of titania-silica mixed oxides doped with Ag and Pt,” Applied Catalysis A: General, vol. 387, no. 1-2, pp. 135–140, 2010. View at Publisher · View at Google Scholar · View at Scopus