Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2012, Article ID 689807, 7 pages
http://dx.doi.org/10.1155/2012/689807
Research Article

Supported Nanosized α-FeOOH Improves Efficiency of Photoelectro-Fenton Process with Reaction-Controlled pH Adjustment for Sustainable Water Treatment

1Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122, China
2School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
3Guangzhou Municipal Engineering Design & Research Institute, Guangzhou 510060, China

Received 27 July 2012; Accepted 12 September 2012

Academic Editor: Jiaguo Yu

Copyright © 2012 Chuan Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Neyens and J. Baeyens, “A review of classic Fenton's peroxidation as an advanced oxidation technique,” Journal of Hazardous Materials, vol. 98, no. 1–3, pp. 33–50, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. J. J. Pignatello, E. Oliveros, and A. MacKay, “Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry,” Critical Reviews in Environmental Science and Technology, vol. 36, no. 1, pp. 1–84, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Brillas, E. Mur, R. Sauleda et al., “Aniline mineralization by AOP's: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes,” Applied Catalysis B, vol. 16, no. 1, pp. 31–42, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. M. A. Oturan, J. Peiroten, P. Chartrin, and A. J. Acher, “Complete destruction of p-Nitrophenol in aqueous medium by electro-fenton method,” Environmental Science and Technology, vol. 34, no. 16, pp. 3474–3479, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Casado, J. Fornaguera, and M. I. Galán, “Mineralization of aromatics in water by sunlight-assisted Electro-Fenton technology in a pilot reactor,” Environmental Science and Technology, vol. 39, no. 6, pp. 1843–1847, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Brillas, J. C. Calpe, and J. Casado, “Mineralization of 2,4-D by advanced electrochemical oxidation processes,” Water Research, vol. 34, no. 8, pp. 2253–2262, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. S. S. Abu Amr and H. A. Aziz, “New treatment of stabilized leachate by ozone/Fenton in the advanced oxidation process,” Waste Management, vol. 32, no. 9, pp. 1693–1698, 2012. View at Publisher · View at Google Scholar
  8. A. El-Ghenymy, S. Garcia-Segura, R. M. Rodríguez et al., “Optimization of the electro-Fenton and solar photoelectro-Fenton treatments of sulfanilic acid solutions using a pre-pilot flow plant by response surface methodology,” Journal of Hazardous Materials, vol. 221-222, pp. 288–297, 2012. View at Publisher · View at Google Scholar
  9. V. J. P. Vilar, J. M. S. Moreira, A. Fonseca et al., “Application of Fenton and solar photo-Fenton processes to the treatment of a sanitary landfill leachate in a pilot plant with CPCs,” Journal of Advanced Oxidation Technologies, vol. 15, no. 1, pp. 107–116, 2012. View at Google Scholar
  10. R. G. Zepp, B. C. Faust, and J. Holgné, “Hydroxyl radical formation in aqueous reactions (pH 3-8) of iron(II) with hydrogen peroxide: the photo-fenton reaction,” Environmental Science and Technology, vol. 26, no. 2, pp. 313–319, 1992. View at Google Scholar · View at Scopus
  11. E. Lipczynska-Kochany, G. Sprah, and S. Harms, “Influence of some groundwater and surface waters constituents on the degradation of 4-chlorophenol by the Fenton reaction,” Chemosphere, vol. 30, no. 1, pp. 9–20, 1995. View at Publisher · View at Google Scholar · View at Scopus
  12. M. L. Kremer, “The fenton reaction. Dependence of the rate on pH,” Journal of Physical Chemistry A, vol. 107, no. 11, pp. 1734–1741, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Irmak, H. I. Yavuz, and O. Erbatur, “Degradation of 4-chloro-2-methylphenol in aqueous solution by electro-Fenton and photoelectro-Fenton processes,” Applied Catalysis B, vol. 63, no. 3-4, pp. 243–248, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Boye, M. M. Dieng, and E. Brillas, “Anodic oxidation, electro-Fenton and photoelectro-Fenton treatments of 2,4,5-trichlorophenoxyacetic acid,” Journal of Electroanalytical Chemistry, vol. 557, pp. 135–146, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Brillas, M. A. Baños, M. Skoumal, P. L. Cabot, J. A. Garrido, and R. M. Rodríguez, “Degradation of the herbicide 2,4-DP by anodic oxidation, electro-Fenton and photoelectro-Fenton using platinum and boron-doped diamond anodes,” Chemosphere, vol. 68, no. 2, pp. 199–209, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. X. R. Zhao, L. H. Zhu, Y. Y. Zhang et al., “Removing organic contaminants with bifunctional iron modified rectorite as efficient adsorbent and visible light photo-Fenton catalyst,” Journal of Hazardous Materials, vol. 215, pp. 57–64, 2012. View at Publisher · View at Google Scholar
  17. X. M. Zhou, J. Y. Lan, G. Liu et al., “Facet-mediated photodegradation of organic dye over hematite architectures by visible light,” Angewandte Chemie International Edition, vol. 51, pp. 178–182, 2012. View at Publisher · View at Google Scholar
  18. M. Hartmann, S. Kullmann, and H. Keller, “Wastewater treatment with heterogeneous Fenton-type catalysts based on porous materials,” Journal of Materials Chemistry, vol. 20, no. 41, pp. 9002–9017, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Liu, C. Wang, X. Li, X. Xuan, C. Jiang, and H. N. Cui, “A novel electro-Fenton process for water treatment: reaction-controlled pH adjustment and performance assessment,” Environmental Science and Technology, vol. 41, no. 8, pp. 2937–2942, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. H. E. G. M. M. Makr, “Diatomite: its characterization, modification and applications,” Asian Journal Materias Science, vol. 2, no. 3, pp. 121–136, 2010. View at Publisher · View at Google Scholar
  21. C. A. Staples, D. R. Peterson, T. F. Parkerton, and W. J. Adams, “The environmental fate of phthalate esters: a literature review,” Chemosphere, vol. 35, no. 4, pp. 667–749, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Wang and J. Chi, “Phthalic acid esters in the rhizosphere sediments of emergent plants from two shallow lakes,” Journal of Soils and Sediments, vol. 12, no. 7, pp. 1189–1196, 2012. View at Publisher · View at Google Scholar
  23. C. Zhang and Y. Wang, “Removal of dissolved organic matter and phthalic acid esters from landfill leachate through a complexation-flocculation process,” Waste Management, vol. 29, no. 1, pp. 110–116, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Yan and G. Pan, “Increase in biodegradation of dimethyl phthalate by Closterium lunula using inorganic carbon,” Chemosphere, vol. 55, no. 9, pp. 1281–1285, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Huang and T. Xu, “Electrodialysis with bipolar membranes for sustainable development,” Environmental Science and Technology, vol. 40, no. 17, pp. 5233–5243, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Xu, “Ion exchange membranes: state of their development and perspective,” Journal of Membrane Science, vol. 263, no. 1-2, pp. 1–29, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. American Public Health Association/American Water Works Association/Water Environment Federation, Standard Methods For the Examination of Water and Wastewater, American Public Health Association/American Water Works Association/Water Environment Federation, Washington, DC, USA, 19th edition, 1995.