Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2012, Article ID 759306, 9 pages
http://dx.doi.org/10.1155/2012/759306
Research Article

Mechanistic Study of Visible-Light-Induced Photodegradation of 4-Chlorophenol by TiO2−xNx with Low Nitrogen Concentration

1Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
2State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
3Department of Chemistry, Tsinghua University, Beijing 100084, China

Received 7 April 2011; Accepted 3 May 2011

Academic Editor: Jiaguo Yu

Copyright © 2012 Guangfeng Shang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Gamage and Z. S. Zhang, “Applications of photocatalytic disinfection,” International Journal of Photoenergy, vol. 2010, no. 2010, pp. 764870–764881, 2010. View at Google Scholar
  2. J. Yu, L. Qi, and M. Jaroniec, “Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets,” Journal of Physical Chemistry C, vol. 114, no. 30, pp. 13118–13125, 2010. View at Google Scholar
  3. J. Yu, Y. Hai , and B. Cheng, “Enhanced photocatalytic H2-production activity of TiO2 by Ni(OH)2 cluster modification,” Journal of Physical Chemistry C, vol. 115, no. 11, pp. 4953–4958, 2010. View at Google Scholar
  4. J. Anthony , P. A. Fernandez-Ibañez, P. S. M. Dunlop, D. M. A. Alrousan, and J. W. J. Hamilton, “Photocatalytic enhancement for solar disinfection of water: a review,” International Journal of Photoenergy, vol. 2011, no. 2011, pp. 1–12, 2011. View at Google Scholar
  5. M. L. Chen and W. C. Oh, “The improved photocatalytic properties of methylene blue for V-2O3/CNT/TiO2 composite under visible light,” International Journal of Photoenergy, vol. 2010, pp. 264831–264836, 2010. View at Google Scholar
  6. B. Naik, K.M. Parida, and C. S. Gopinath, “Facile synthesis of N- and S-incorporated nanocrysalline TiO2 and direct solar-light-driven photocatalytic acitivity,” Journal of Physical Chemistry C, vol. 114, pp. 19473–19482, 2010. View at Google Scholar
  7. W. Choi and S. Kim, “Kinetics and mechanisms of photocatalytic degradation of (CH3)nNH4n+ (0n4) in TiO2 suspension: the role of OH radicals,” Environmental Science and Technology, vol. 36, no. 9, pp. 2019–2025, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. W. Ho, J. Yu, J. Lin, and P. Li, “Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2,” Langmuir, vol. 20, no. 14, pp. 5865–5869, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Di Paola, S. Ikeda, G. Marcì, B. Ohtani, and L. Palmisano, “Transition metal doped TiO2: physical properties and photocatalytic behaviour,” International Journal of Photoenergy, vol. 3, no. 4, pp. 171–176, 2001. View at Google Scholar · View at Scopus
  10. X. Z. Li and F. B. Li, “Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment,” Environmental Science and Technology, vol. 35, no. 11, pp. 2381–2387, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Bae and W. Choi, “Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light,” Environmental Science and Technology, vol. 37, no. 1, pp. 147–152, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. J. J. He, A. Hagfeldt, S. E. Lindquist et al., “Phthalocyanine-sensitized nanostructured TiO2 electrodes prepared by a novel anchoring method,” Langmuir, vol. 17, no. 9, pp. 2743–2747, 2001. View at Google Scholar · View at Scopus
  13. W. Zhao, W. Ma, C. Chen, J. Zhao, and Z. Shuai, “Efficient degradation of toxic organic pollutants with Ni2O3/TiO2−xBx under visible irradiation,” Journal of the American Chemical Society, vol. 126, no. 15, pp. 4782–4783, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Khan, M. Al-Shahry, and W. B. Ingler, “Efficient photochemical water splitting by a chemically modified n-TiO2,” Science, vol. 297, no. 5590, pp. 2243–2245, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. K. S. Han, D.K. Lee, and J. W. Lee, “Nature of N 2P, Ti 3d, O 2p hybridization of N-doped TiO2 nanotubes and superior photovoltaic performatnce through selective atomic N doping,” Chemistry, vol. 17, no. 9, pp. 2579–2582, 2011. View at Google Scholar
  16. S. Liu, J. Yu, and W. Wang, “Effects of annealing on the microstructures and photoactivity of fluorinated N-doped TiO2,” Physical Chemistry Chemical Physics, vol. 12, no. 38, pp. 12308–12315, 2010. View at Google Scholar
  17. O. Diwald, T. L. Thompson, T. Zubkov, G. Goralski, S. D. Walck, and J. T. Yates, “Photochemical activity of nitrogen-doped rutile TiO2(110) in visible light,” Journal of Physical Chemistry B, vol. 108, no. 19, pp. 6004–6008, 2004. View at Google Scholar · View at Scopus
  18. Q. Xiang, J. Yu, and M. Jaroniec, “Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets: synthesis, characterization and visible-light photocatalytic activity,” Physical Chemistry Chemical Physics, vol. 13, no. 11, pp. 4853–4861, 2010. View at Google Scholar
  19. S. Sakthivel, M. Janczarek, and H. Kisch, “Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2,” Journal of Physical Chemistry B, vol. 108, no. 50, pp. 19384–19387, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Bacsa, J. Kiwi, T. Ohno, P. Albers, and V. Nadtochenko, “Preparation, testing and characterization of doped TiO2 active in the peroxidation of biomolecules under visible light,” Journal of Physical Chemistry B, vol. 109, no. 12, pp. 5994–6003, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. X. Hong, Z. Wang, W. Cai et al., “Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide,” Chemistry of Materials, vol. 17, no. 6, pp. 1548–1552, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Burda, Y. Lou, X. Chen, A. C. S. Samia, J. Stout, and J. L. Gole, “Enhanced nitrogen doping in TiO2 nanoparticles,” Nano Letters, vol. 3, no. 8, pp. 1049–1051, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. G. R. Torres, T. Lindgren, J. Lu, C. G. Granqvist, and S. E. Lindquist, “Photoelectrochemical study of nitrogen-doped titanium dioxide for water oxidation,” Journal of Physical Chemistry B, vol. 108, no. 19, pp. 5995–6003, 2004. View at Google Scholar · View at Scopus
  24. D. Li, H. Haneda, S. Hishita, and N. Ohashi, “Visible-light-driven N-F-codoped TiO2 photocatalysts. 1. Synthesis by spray pyrolysis and surface characterization,” Chemistry of Materials, vol. 17, no. 10, pp. 2588–2595, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. S. U. M. Khan, M. Al-Shahry, and W. B. Ingler Jr., “Efficient photochemical water splitting by a chemically modified n-TiO2,” Science, vol. 297, no. 5590, pp. 2243–2245, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Irie, Y. Watanabe, and K. Hashimoto, “Nitrogen-concentration dependence on photocatalytic activity of TiO2−xNx powders,” Journal of Physical Chemistry B, vol. 107, no. 23, pp. 5483–5486, 2003. View at Google Scholar · View at Scopus
  27. T. Ihara, M. Miyoshi, Y. Iriyama, O. Matsumoto, and S. Sugihara, “Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping,” Applied Catalysis B, vol. 42, no. 4, pp. 403–409, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Lindgren, J. M. Mwabora, E. Avandaño et al., “Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering,” Journal of Physical Chemistry B, vol. 107, no. 24, pp. 5709–5716, 2003. View at Google Scholar · View at Scopus
  29. H. Fu, L. Zhang, S. Zhang, Y. Zhu, and J. Zhao, “Electron spin resonance spin-trapping detection of radical intermediates in N-doped TiO2-assisted photodegradation of 4-chlorophenol,” Journal of Physical Chemistry B, vol. 110, no. 7, pp. 3061–3065, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. C. D. Valentin, G. Pacchioni, and A. Selloni, “Origin of the different photoactivity of N-doped anatase and rutile TiO2,” Physical Review B, vol. 70, no. 8, pp. 1–4, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. O. Diwald, T. L. Thompson, E. G. Goralski, S. D. Walck, and J. T. Yates Jr., “The effect of nitrogen ion implantation on the photoactivity of TiO2 rutile single crystals,” Journal of Physical Chemistry B, vol. 108, no. 1, pp. 52–57, 2004. View at Google Scholar · View at Scopus
  32. X. Chen and C. Burda, “Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles,” Journal of Physical Chemistry B, vol. 108, no. 40, pp. 15446–15449, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. C. D. Valentin, G. Pacchioni, A. Selloni, S. Livraghi, and E. Giamello, “Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations,” Journal of Physical Chemistry B, vol. 109, no. 23, pp. 11414–11419, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. R.M. Dreizler and E. K. Gross, Density Functional Theory: An Approach to the Quantum Many-Body Problem, Springer, Berlin, Germany, 1990.
  35. Y. Huang, J. Li, W. Ma, M. Cheng, and J. Zhao, “Efficient H2O2 oxidation of organic pollutants catalyzed by supported iron sulfophenylporphyrin under visible light irradiation,” Journal of Physical Chemistry B, vol. 108, no. 22, pp. 7263–7270, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Chen, W. Zhao, P. Lei, J. Zhao, and N. Serpone, “Photosensitized degradation of dyes in polyoxometalate solutions versus TiO2 dispersions under visible-light Irradiation: mechanistic implications,” Chemistry, vol. 10, no. 8, pp. 1956–1965, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Liu, X. Li, and J. Zhao, “Photooxidation pathway of sulforhodamine-B. Dependence on the adsorption mode on TiO2 exposed to visible light radiation,” Environmental Science and Technology, vol. 34, no. 18, pp. 3982–3990, 2000. View at Publisher · View at Google Scholar · View at Scopus